

American University

Հայաստանի Ամերիկյան of Armenia | Համալսարան

School of Public Health Center for Health Services Research and Development

Environmental characterization of 11 metal mining and smelting communities in Armenia: lead, arsenic and other heavy metal concentrations in residential soil

Final Report

Prepared for Pure Earth (Blacksmith Institute)

Authors of the report Kristina Akopyan, MD, MPH Varduhi Petrosyan, MS, PhD Ruzann Grigoryan, MD, MPH Dzovinar Melkom Melkomian, DVM, MPH

Armenia

2014

40 Baghramyan Avenue Yerevan 0019 Republic of Armenia (374 10) 32 40 40 (374 10) 512 512 (fax)

300 Lakeside Drive, 12th Floor Oakland, CA 94612 USA (510) 987 9452 (510) 208 3576 (fax)

STUDY TEAM III
ACKNOWLEDGEMENTS IV
EXECUTIVE SUMMARY
INTRODUCTION
RESULTS
I. Lori Marz Communities
1. Alaverdi Community
2. Akhtala Community
3. Armanis Community
4. Metz Ayrum Community
5. Chochkan Community
II. Syunik region communities
6. Agarak community
7. Artsvanik Community
8. Kajaran Community41
9. Kapan Community
10. Lernadzor community
11. Syunik Village Community58
REFERENCE:
FIGURES

STUDY TEAM

Kristina Akopyan, MD, MPH Suren Galstyan, MS, MPH Siran Grboyan, MS, MPH Ruzann Grigoryan, MD, MPH Joshua Jayaraj Chadwick, MD candidate, MPH Vahe Khachadourian, MD, MPH, PhD candidate Gevorg Mamikonyan, BA, MS, MPH Dzovinar Melkom Melkomian, DVM, MPH, MBA Syuzanna Petrosyan, BS, MPH Varduhi Petrosyan, MS, PhD Serine Sahakyan, BS, MPH Aelita Sargsyan, MD, MPH Arman Tsaturyan, MD, MPH Lyucy Unanyan, BS

ACKNOWLEDGEMENTS

The research team is grateful to the Pure Earth, previously Blacksmith Institute, for supporting the implementation of the Thorough Risk Assessment Project.

EXECUTIVE SUMMARY

The AUA School of Public Health (SPH) in collaboration with Pure Earth (previously Blacksmith Institute) conducted a thorough risk assessment in 11 communities affected by mining and smelting industries in Armenia. The study aimed to quantify the amount of heavy metals such as arsenic, lead, chromium and cadmium in residential soil to assess the ecological impact of contamination on the communities and to estimate health risks that heavy metals pose to human health.

Based on the results of the rapid risk screening of toxic waste sites in Armenia the study team identified 11 most affected communities in Lori and Syunik marzes, including Alaverdi, Akhtala, Armanis, Metz Ayrum, Chochkan, Agarak, Artsvanik, Kajaran, Kapan, Lernadzor, and Syunik communities.

In total, 1930 soil samples from the target-communities were collected and tested in the laboratory. The fieldwork and laboratory operating team followed standard protocols based on international best practices for all the steps of the assessment including soil sampling, transportation, preparation (homogenization, drying and sieving) and analysis by the XRF analyzer.

Considering the level of pollution detected in each community and the population size at risk, the study team developed a priority list of communities for interventions such as cleanup activities, educational awareness raising programs to reduce human exposure to heavy metals. In addition, the SPH researchers made maps of lead and arsenic contamination for each of the 11 communities. This helped to visualize the overall trends of heavy metal contamination in the communities and the source of pollution.

The team has developed educational brochures on health risks from heavy metals, including lead and arsenic, and preventive measures and gave them to landowners, when the testing results were above the maximum allowable levels.

The SPH shared the results of the Thorough Risk Assessemnt with the Government of Armenia including Prime Minister's Office, Ministries of Health, Nature Protection, and Emergency Situations as well as Lori marz authority, including mayor's offices of Alaverdi and Akhtala.

INTRODUCTION

Based on the results of the rapid risk assessment of the Toxic Waste Site, thorough risk assessment was conducted in the 11 most affected communities of Lori and Syunik Marzes, including Alaverdi, Akhtala, Armanis, Metz Ayrum, Chochkan, Agarak, Artsvanik, Kajaran, Kapan, Lernadzor, and Syunik village, taking into account the level of the pollution and size of the affected community.

The number of soil samples collected from each community was determined by calculating the population size at risk in the community affected by potential sources of pollution (e.g., mining and ore processing factories, including smelters or tailing ponds). The selected communities were grouped into three categories: 1.Small-sized villages (number of soil samples collected: 90-116), 2. Medium-sized villages/small-sized towns (number of soil samples collected: 166-202), and 3. Large-sized towns (number of soil samples collected: 279-289).

Soil samples were collected from yards, gardens, schools and kindergarten playgrounds in addition to background samples at surface, 10cm and 20 cm depth outside and inside all of the 11 communities. In Akhtala, soil samples were also collected from the Akhtala church yard and nearby closed tailing pond currently covered with soil and trees. In all the communities, with the exception of Alaverdi community, the research team processed the collected soil samples at the environmental laboratory and then tested them using an XRF analyzer. In Alaverdi, the direct in-situ/grab soil testing method was utilized with the XRF spectrometer. Standard protocols developed according to international best practices, including continuous quality assurance procedure(s), were followed during the in-situ testing, soil sample collection, preparation and testing procedures^{1,2}.

Table 1 presents the details of the 11 communities. For the thorough risk assessment in 11 selected communities 1930 soil samples were collected and tested, additional 313 testings were done for the quality assurance purposes (including the calibration, blank and double testings). The testing results were compared with three reference levels: Maximum Allowable Concentrations (MAC), Clean up Levels (CL) and Highest Background Level (HBL) at 10cm and 20 cm depth (see Table 2).

Table 3 presents the total undetected and those undetected measurements that have estimated LOD above the MAC. The most concerning results are noticed with Cadmium

1

samples: the analyzer failed to detect any Cadmium concentration in 98.5% of the samples. However, the calculated LOD for all these samples were above MAC. Failure to detect concentrations of Cadmium does not necessarily mean in reality low Cadmium concentrations in the samples, but the physical characteristics of the soil or other factors might disrupt the detection ability of the instrument. For other analytes of interest, the percentage of the undetected samples are quite low (e.g., 4.7% for Arsenic, 0.3% for Lead, 8.73% for Chromium) and the calculated LOD for the undetected samples exceeded MAC for Arsenic (2.5% of the samples out of the total samples) and Chromium (5.9% of the samples out of the total samples).

Table 4 comparatively summarizes the results above MAC, CL, and HBL for Arsenic, Lead, Chromium and Cadmium for all the communities. The study team developed maps of lead and arsenic contamination for each of the 11 communities to visualize the overall trends of heavy metal contamination in the communities and the source of pollution (see Figures).

In order to prioritize the affected communities for implementing interventions, such as cleanup activities and educational awareness raising programs that could reduce people's exposure to heavy metals, the following criteria are considered:

1) Highest number of community samples that are above CL for Lead

2) Highest number of community samples that are above CL for Arsenic

3) Highest number of community samples that are above MAC for Arsenic

Weighting coefficients of 2:2:1 was applied for criteria 1, 2 and 3 accordingly. The highest weight is given to criteria 1 and 2 since they both (CL for Lead and Arsenic) target the necessity of remediation activities and are based on the health effects of the population-at-risk. Weighting was done for large-sized towns, medium-sized villages/small-sized towns and small-sized villages separately.

Table 5 summarizes the priority list for interventions. Results show that among large-sized towns, Alaverdi community is the most contaminated and should be a priority for interventions. Among medium-sized villages/small-sized towns, the most polluted community is Akhtala and Armanis is the most contaminated community among small-sized villages.

Table 1. Communities Selected for Environmental Thorough Risk Assessment by Population Size and Soil Sample Type and Number

size*		N of Soil Samples			Background			d	N of	N of samples	Total									
Community	Population	Yard	Gardens	Church	ıg Pond	com	side nmu ty	Outside commu nity				commu		commu		commu		schools and kinderg	from schools and	N of soil sample
	Po	Υ	Ga	Ch	Tailing	10	20	10	20	artens	kinderg artens	S								
· · · 1	(50		20		F	cm	cm	cm	cm	2	10	110								
Artsvanik	652	66	30			1	1	1	1	2	10	113								
Lernadzor	634	63	37			1	1	1	1	2	10	116								
Mets Ayrum	986	60	30			1	1	1	1	2	10	106								
Syunik village	1,023	51	23			1	1	1	1	2	10	90								
Agarak town	4,800	91	75			2	2	1	1	2	10	185								
Akhtala	2,400	111	37	20	5	2	2	1	1	4	20	202								
Chochkan	2,138	100	50			0	0	1	1	2	10	166								
Alaverdi	16,500	251				5	5	1	1	4	20	289								
Kajaran	8,436	250				2	2	1	1	4	20	279								
Kapan	45,711	251				2	2	1	1	4	20	281								
Armanis	620	51	26			1	1	1	1	2	20	103								

*The population was taken from the official websites of marzes of Armenia ("marzname".gov.am)

Heavy Metals	MAC mg/kg	CL mg/kg	HBL (depth 10cm, 20 cm) mg/kg										
	Residential/ Agricultural		Alaverdi ¹	Akhtala	Armanis	Metz Ayrum	Chochkan	Agarak	Artsvanik	Kajaran	Kapan	Lernadzor	Syunik village
As	12	100	20	40	31	56	83	17	10	35	39	61	55
Pb	400	400	29	59	140	75	94	178	11	129	157	60	26
Cr	64	_*	99	147	391	203	203	215	123	238	177	221	147
Cd	14/1.4	_*	ND^2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

* Not identified

 1 In Alaverdi highest outside measurement was considered 2 ND – Not detected

Heavy Metals		% of undetected measurements out of total	% out of total above MAC		
	MAC mg/kg	n/N	n/N		
		Range of LOD's mg/kg	Range of LOD's above MAC mg/kg		
	Residential/ Agricultural				
As	12	4.7%	2.5%		
		91/1930	48/1930		
		4-304	13-304		
Pb	400	0.3%	0%		
		5/1930	0/1930		
		7-13	-		
Cr	64	8.73%	5.9%		
		155/1930	114/1930		
		37-299	65-299		
Cd	14/1.4	98.5%	98.5%		
		1902/1930	1902/1930		
		15-80	15-80		

Table 3. Total Undetected Measurements and Undetected Measurements with the Calculated LOD above MAC

Table 4. Results above MAC, CL, HBL for All Communities

	Communities											
				Lori Marz			Syunik Marz					
		Alaverdi	Akhtala	Armanis	Metz Ayrum	Chochkan	Agarak	Artsvanik	Kajaran	Kapan	Lernadzor	Syunik village
	% above MAC	100.0%	93.6%	82.3%	99.0%	91.4%	31.0%	51.0%	97.4%	96.7%	92.2%	83.1%
As	% above CL	73.4%	2.9%	1.0%	0.0%	0.6%	0.0%	0.0%	0.7%	2.9%	0.0%	0.0%
	% above HBL	98.6%	44.0%	7.3%	1.9%	0.6%	5.1%	76.9%	30.3%	11.2%	0.0%	2.2%
	% above MAC	22.6%	26.7%	5.8%	0.0%	1.2%	0.5%	0.9%	3.2%	4.3%	0.9%	0.0%
Pb	% above CL	22.6%	26.7%	5.8%	0.0%	1.2%	0.5%	0.9%	3.2%	4.3%	0.9%	0.0%
	% above HBL	99.0%	90.1%	25.2%	19.8%	12.1%	3.8%	91.2%	20.5%	19.6%	32.8%	74.4%
Cr	% above MAC	100.0%	97.9%	100.0%	100.0%	96.9%	96.2%	96.2%	100.0%	99.6%	99.1%	97.8%
Cr	% above HBL	100.0%	49.5%	6.2%	6.9%	7.4%	7.0%	47.2%	39.8%	21.1%	15.2%	23.6%
C.J	% above MAC	100.0%	100.0%	100.0%					100.0%	100.0%		100.0%
Cd	% above HBL											

Table 5. Priority List: Interventions for the Affected Communities

Large-Sized Towns Population (8436-45711)	Medium-Sized Villages/ Small-Sized Towns Population (2138-4800)	Small-Sized Villages Population (620-1023)
Alaverdi	Akhtala	Armanis
Kapan	Chochkan	Lernadzor
Kajaran	Agarak	Artsvanik
		Mets Ayrum
		Syunik Village

RESULTS

I. Lori Marz Communities

1. Alaverdi Community

The in-situ testing of residential soil samples in Alaverdi was performed by XRF analyzer from July 25 to 27 of 2013. The entire town was divided into five sectors (see Picture 1.) and 50 soil samples were tested from each sector, in addition to 20 soil samples from two school yards and two kindergartens. In total, 271 soil samples were tested: 251 samples from residential yards, 10 from the school yards and 10 from the kindergarten yards. In addition, 18 soil samples were tested to assess the background exposure to heavy metals (see ranges of background measurements in Table 1.0). To ensure quality assurance, 52 tests were performed: 19 calibration tests, 18 blank tests and 15 double sample tests. The duration of the testing time was 60 seconds. The testing results were compared with three reference levels: Maximum Allowable Concentrations (MAC), Clean up Levels (CL) and Highest Background Level (HBL) of 10cm, 20 cm depth (see Table 1.1). The reference level for background was considered to be the highest concentration of heavy metals. Considering the fact that the smelter inside Alaverdi has been operating for more than two centuries causing pollution of deeper layers of soil, only the outside community background sample was considered.

Heavy metals	Inside community Range (mg/kg)	Outside community Range (mg/kg)
As	20-222	19-24
Pb	19-333	14-33
Cr	180	99
Cd	-	-

Table 1	1.0 Al:	averdi co	mmunity:	Range	of backgr	ound mea	surements
					0- ~		

MAC	CL	HBL (10cm, 20 cm depth)
mg/kg	mg/kg	mg/kg
esidential/ Agricultural		
12	100	20
400	400	29
64	_*	99
14/1.4	_*	Not detected
	mg/kg esidential/ Agricultural 12 400 64	mg/kg mg/kg esidential/ Agricultural 12 12 100 400 400 64 -*

Table 1.1. Alaverdi Community: Reference Levels for Comparison

* Not identified

Some measurements of the community soil samples from residential yards, schools and kindergartens were below the LOD the XRF analyzer. The results of undetected measurements are presented in Table 1.2. When the analyzer could not detect the analyte of interest, calculated LOD was provided which is counted as three times the error of counting statistics of each measurement. Interestingly, calculated LOD differed for each measurement. Arsenic was not detected in 1% of all samples tested and the calculated LOD was below the MAC. Lead was not detected in 0.3% of all samples tested but calculated LOD was below the MAC. Chromium was not detected in 36.7% cases and the LOD was above MAC. Cadmium was not detected in 99.7% of all samples tested and the LOD for these samples were above MAC.

		% of undetected measurements out of total	% out of total above MAC	
Heavy Metals	MAC mg/kg	n/N	n/N	
Wietais		Range of LOD's mg/kg	Range of LOD's above MAC mg/kg	
	Residential/Agricultural			
As	12	1.0%	1.0%	
		3/289	3/289	
		16-35	16-35	
Pb	400	0.3%	0.0%	
		1/289	0/289	
		13	-	
Cr	64	36.7%	36.7%	
		106/289	106/289	
		107-299	107-299	
Cd	14/1.4	99.7%	99.7%	
		288/289	288/289	
		31-80	31-80	

Table 1.2. Alaverdi Community: Undetected Measurement

All undetected measurements were excluded from further analysis. Table 1.3 presents percentage of all samples that exceeded the three reference levels: MAC, HBL (depth 10cm, 20

cm), CL as well as the GM and the range of all detected measurements. Results indicate that 100% of all samples exceeded MAC for Arsenic, Chromium and Cadmium and 22.6% of all samples exceeded MAC for Lead. GM for Arsenic exceeded the MAC more than 13 times. For Arsenic, 73.4% of soil samples need clean-up while only 22.6% samples for Lead. CL for Chromium and Cadmium were not identified during the literature review and standards were substantially different across countries. For Arsenic, Lead and Chromium (Cadmium was not detected in the soil) results exceeded HBL by 98.6%, 99.0% and 98.4% accordingly, suggesting that even for Arsenic and Chromium background levels exceeded MAC. This suggests that even in comparison with the highest background levels, the surface level exposure is high, which is an indication of external pollution.

	MAC mg/kg	% above MAC out of detected		% above CL level out of detected	HBL	% above HBL out of detected
Heavy Metals	tial/ ural	n/N	CL mg/kg	n/N	(depth 10cm, 20	n/N
Heav	Residential/ Agricultural	GM and Range of all detected mg/kg		GM and Range of all detected mg/kg	cm)	GM and Range of all detected mg/kg
As	12	100%	100	73.4%	20	98.6%
		286/286		210/286		282/286
		159.9		159.9		159.9
		15-1064		15-1064		15-1064
Pb	400	22.6%	400	22.6%	29	99.0%
		65/288		65/288		285/288
		237.5		237.5		237.5
		14-3703		14-3703		14-3703
Cr	64	100.0%	*		99	98.4%
		183/183				180/183
		341.7				341.7
		72-6063				72-6063
Cd	14/1.4	100%	*		Not	
		1/1			Detected	
		41				
		41				
*	Not identifi	ad				

Table 1.3. Alaverdi Community: Comparison of Results to MAC, HBL (depth 10 cm, 20 cm) and CL

* Not identified

Table 1.4 presents the results exceeding MAC by sample type, GM and range of all detected measurements. The results show that Arsenic and Chromium levels in all samples from yards, schools and kindergartens are above MAC. Lead exceeds MAC in 21.6% yard soil samples and 55.0% of school and kindergarten samples. Cadmium was detected only in one sample and the results exceeded MAC. In yard samples, GM exceeds MAC for Arsenic by 13.5 times and Chromium by 5.6 times. GM for Arsenic in school and kindergarten samples exceeds MAC by 18.8 times and Chromium by 4.6 times. Lead also exceeds MAC among these samples.

	MAC Mg/kg	Soil Sample Type							
S		Ya	ırd	Scho	ol &				
ital				Kinder	garten				
Heavy metals	ial/ Iral	%↑	GM and	% ↑	GM and				
٧y	ent	MAC	Range of	MAC	Range of				
lea	side		all		all				
H	Residential Agricultura	n/N	detected	n/N	detected				
			mg/kg		mg/kg				
Aa	12 -	100.0%	162	100.0%	225.7				
As	12 -	250/250	24-1064	20/20	71-594				
DL	400	21.6%	246.1	55.0%	402.3				
Pb	400 -	54/250	40-3703	11/20	116-841				
C	61	100.0%	355.9	100.0%	296.9				
Cr	64 -	165/165	135-6063	14/14	199-582				
Cd	14/14	-	-	100.0%	41*				
Ca	14/1.4 -	-	_	1/1	41*				

 Table 1.4. Alaverdi Community: Results above MAC by Sample Type

* Only one measurement was done

Table 1.5 shows the results above MAC by sections. In all sections, Arsenic and Chromium levels are above MAC in 100.0% of samples. Lead levels exceed MAC in 14.0% of samples from Section 1 and 42.9% of samples, the highest percentage, from Section 2, which is closest to the smelter. Lead levels also exceed MAC in 7.1% of samples from Section 3, 30.9% of samples from Section 4 and 16.7% of samples from Section 5.

Table 1.6 shows results that are above MAC by CL. Results show that 75.2% of yard soil samples exceed CL for Arsenic and 21.6% for Lead. Samples from school and kindergartens

exceed CL in 85% for Arsenic and in 55.0% for Lead.

Table 1.7 summarizes soil sample test results above the CL collected from the designated five sections. GM mean for Arsenic is the highest in section 2 (241.1 mg/kg - exceeded CL by 2.4 times), in this section 88.9% of samples exceeded CL. The next most contaminated section is number 4, where GM is 218.2 mg/kg and exceeded MAC by 2.2 times. In section 1 65.5% of testing exceeded CL for Arsenic and GM exceeded CL by 1.3 times, in section 3 54.7% testing exceeded CL for Arsenic and GM exceeded CL by 1.1 times and in section 5 68.5% exceeded CL for Arsenic and GM is above CL for Arsenic by 1.3 times.

GM exceeded for Lead exceeded CL for Lead in section 2 and the 42.9% of testing exceeded CL in this section. In section 1 14.0% exceeded Cl for Lead, in Section 3 - 7.1%, in Section 4 - 30.9% and in Section 5 16.7% exceeded MAC for Lead.

	MAC					Sect	ions				
als	mg/kg]	1		2		3	4	4	4	5
Heavy metals	Residential/ Agricultural	%↑ MAC	GM and Range of all	%↑ MAC	GM and Range of all	%↑ MAC	GM and Range of all	%↑ MAC	GM and Range of all	%↑ MAC	GM and Range of all
Η	Resi Agri	n/N	detected mg/kg	n/N	detected mg/kg	n/N	detected mg/kg	n/N	detected mg/kg	n/N	detected mg/kg
As	12	100.0%	125.7	100.0%	241.1	100.0%	110.6	100.0%	218.2	100.0%	127.6
		58/58	24-507	63/63	64-1064	53/53	19-568	55/55	55-912	54/54	24-605
Pb	400	14.0%	222.7	42.9%	409.4	7.1%	155.3	30.9%	296.8	16.7%	189.3
		8/57	44-771	27/63	86-3703	4/56	39-995	17/55	52-857	9/54	19-1013
Cr	64	100.0%	418	100.0%	372.7	100.0%	302.1	100.0%	388.8	100.0%	367.1
		37/37		50/50	135-6063	24/24	157-2009	35/35	176-2074	34/34	200-1537
Cd	14/1.4	100.0% 1/1	41	-	-	-	-	-		-	-
. O 1											

Table 1.5. Alaverdi Community: Results above MAC by Sections

* Only one measurement was done

Table 1.6. Alaverdi Community: Results above CL by Sample Type

		Sample Type						
Heavy Metals	CL	Ya	ard	School & Kindergarten				
y N	mg kg	%↑CL	GM and		GM and			
eav	mgıng	70 CL	Range of	$\% \uparrow CL$	Range of			
Η		n/N	all detected	n/N	all detected			
		11/18	mg/kg	11/18	mg/kg			
As	100	75.2%	162	85.0%	225.7			
AS	100	188/250	24-1064	17/20	71-594			
Pb	400	21.6%	246.1	55.0%	402.3			
P0	400	54/250	40-3703	11/20	116-841			

Metals	CL mg kg					Sec	tions				
			1		2		3		4		5
Me			GM and								
Heavy		%↑CL	Range of all								
Η		n/N	detected mg/kg								
As	100	65.5%	125.7	88.9%	241.1	54.7%	110.6	90.9%	218.2	68.5%	127.6
		38/58	24-507	56/63	64-1064	29/53	19-568	50/55	55-912	37/54	24-605
Pb	400	14.0%	222.7	42.9%	409.4	7.1%	155.3	30.9%	296.8	16.7%	189.3
		8/57	44-771	27/63	86-3703	4/56	39-995	17/55	52-857	9/54	19-1013

Table 1.7. Alaverdi Community: Results above CL by Sections

Picture 1. Alverdi Community: Map with highlighted sectors.

2. Akhtala Community

The thorough risk assessment field work in Akhtala community took place in October 2013. The town was divided into four sectors with the churchyard being considered a separate testing area. The investigators collected 202 soil samples: 111 from yards, 37 from gardens (used for agriculture), 20 from schools and kindergartens, 9 for background purposes at surface, 10cm and 20cm depth inside and outside of the community (out of them, one background measurement was done in churchyard to understand the level of contamination and results not considered while defining HBL, range of remaining background measurements presented in the Table 2.0), 20 from the churchyard and 5 from the surface of the recultivated tailing pond.

Soil samples were prepared in the laboratory following the protocol developed based on review of international guidelines. The preparation process for soil samples took place in November of 2013 and it included drying, homogenization and sieving. The prepared soil samples were tested by the XRF analyzer (INNOV-X α -2000) based on the protocol developed for soil testing. The testing process took place in December of 2013 using 90 seconds as the duration of testing time. Samples displaying test results below the LOD and above the MAC were retested again in March (or April) of 2014 using 240 seconds as the testing time. The testing results were compared with three reference levels: Maximum Allowable Concentrations (MAC), Clean up Levels (CL) and Highest Background Level (HBL) of 10cm, 20 cm depth (see Table 2.1).

Heavy metals	Range (mg/kg)
As	20-58
Pb	36-123
Cr	101-160
Cd	_

 Table 2.0 Akhtala community: Range of background measurements

Heavy	MAC	CL	HBL (10, 20 cm depth)
Metals	mg/kg	mg/kg	mg/kg
	Residential/ Agricultural		
As	12	100	40
Pb	400	400	59
Cr	64	_*	147
Cd	14/1.4	_*	Not Detected

* Not identified

Some measurements of the community soil samples (in yards, schools and kindergartens) were below the LOD of the XRF analyzer. The results of undetected measurements are presented in Table 2.2. When the analyzer could not detect the analyte of interest, calculated LOD was provided which is counted as three times the error of counting statistics of each measurement. Interestingly, calculated LOD differed for each measurement. Table 4 presents undetected measurements for which the calculated LOD was above MAC. Results of Table 4 show that for Arsenic and Cadmium, the calculated LOD of all undetected measurements exceeded MAC. This means that undetected measurements are not a sign of low concentration of analyte of interest rather the physical matrix of soil disrupts the detection ability of the instrument. For Chromium, out of the 5% undetected measurements only 0.5% exceeded MAC.

Heavy Metals		% of undetected measurements	% above MAC
	MAC mg/kg	n/N	n/N
		Range of LOD's mg/kg	Range of LOD's above MAC mg/kg
R	esidential/ Agricultural		
As	12	13.4%	13.4%
		27/202	27/202
		17-146	17-146
Pb	400	0%	0%
		0/202	0/202
		-	-
Cr	64	5.0%	0.5%
		10/202	1/202
		50-66	66
Cd	14/1.4	91.6%	91.6%
		185/202	185/202
		17-38	17-38

Table 2.2. Akhtala Community: Undetected Measurements

All undetected measurements were excluded from further analysis. Table 2.3 presents percentage of all samples that exceeded the three reference levels: MAC, HBL (depth 10cm, 20 cm), CL as well as the GM and the range of all detected measurements. According to the results,

93.6% of all detected measurements exceeded MAC for Arsenic, 26.7% for Lead, 97.9% for Chromium and 100% of Cadmium. GM of detected measurements for Arsenic exceeded MAC by 3.1 times. For Arsenic, 2.9% of soil samples need clean-up and 26.7% for Lead. CL for Chromium and Cadmium were not identified during the literature review and standards were substantially different across countries. According to the test results, 44.0% of Arsenic, 90.1% of Lead and 49.5% of Chromium exceeded the highest background measurements (Cadmium was not detected in the soil). This indicates that the surface level exposure was higher even in comparison with the highest background measurement thus suggesting external pollution.

Table 2.3. Akhtala Community: Comparison of Results to MAC, HBL (depth 10 cm, 20
cm) and CL

tals	MAC mg/kg	% above MAC out of detected		% above CL level out of detected		% above HBL out of detected	
y Met	al/ ral	n/N	CL mg/kg	n/N	HBL (depth 10,	n/N	
Heavy Metals	Residential/ Agricultural	GM and Range of all detected mg/kg	GM and Rang of all detected mg/kg		20 cm)	GM and Range of all detected mg/kg	
As	12	93.6%	100	2.9%	40	44.0%	
		169/175		5/175		77/175	
		37.6		37.6		37.6	
		9-276		9-276		9-276	
Pb	400	26.7%	400	26.7%	59	90.1%	
		54/202		54/202		182/202	
		293.8		293.8		293.8	
		15-30,083		15-30,083		15-30,083	
Cr	64	97.9%	*		147	49.5%	
		188/192				95/192	
		147.4				147.4	
		55-525				55-525	
Cd	14/1.4	100%	*		Not		
		17/17			Detected		
		53.6					
		21-281					

* Not identified

Table 2.4 presents the results exceeding MAC by sample type, GM and the range of all detected measurements. The most significant finding is that 95% of churchyard samples exceeded MAC for Lead. Table 7 presents the results by sections suggesting that the most contaminated districts

of the town are located near the tailing pond and the churchyard – 40.5% and 27.0% of samples in "Transport" and "Svinets" districts respectively exceeded MAC for Lead, whereas only 4.0% and 10.6% of testing in "Sarahart" and "Barit" Districts exceeded MAC for Lead.

	MAC					Soil Sam	ple Type				
als	Mg/kg	Ya	nd	Garden		School & Kindergarten		Churchyard		Tailing Pond	
Heavy metals	Residential/ Agricultural	%↑MAC n/N	GM and Range of all detected mg/kg	%↑MAC n/N	GM and Range of all detected mg/kg	%↑MAC n/N	GM and Range of all detected mg/kg	%↑MAC n/N	GM and Range of all detected mg/kg	%↑ MAC n/N	GM and Range of all detected mg/kg
	10	97.2%	36.9	94.3%	36.1	95.0%	49.4	100.0%	58.7	100.0%	21.5
As	12	104/107	9-177	33/35	10-92	19/20	12-276	2/2	46-75	5/5	17-36
DL	400	18.9%	230.1	27.0%	264.3	5.0%	130.5	95.0%	4841.1	0.0%	37.7
Pb	400	21/111	15-12,562	10/37	76-8,174	1/20	19-592	19/20	263-30,083	0/5	26-110
Cr	61	98.1%	152.0	97.1%	136.3	95.0%	149.5	100.0%	157.3	100.0%	88.5
Cr	64	103/105	62-525	33/34	59-253	19/20	55-280	20/20	80-378	4/4	70-114
C.1	14/14	100.0%	55.3	100.0%	100.3	-	-	100.0%	45.2	-	-
Cd	14/1.4	4/4	23-106	3/3	37-182	-	_	9/9	21-281	-	-

Table 2.4. Akhtala Community: Results above MAC by Sample Type

	MAC –				Secti	ons				
metals	mg/kg	1 ((True are a w49)		2- "Sv Dist		3- "Sar Dist		4- "Barit" District		
Heavy me	Residential/ Agricultural	%↑MAC	GM and Range of all	%↑MAC	GM and Range of all	%↑MAC	GM and Range of all	%↑MAC	GM and Range of all	
Η	Resid Agric	n/N	detected mg/kg	n/N	detected mg/kg	n/N	detected mg/kg	n/N	detected mg/kg	
As	12	93.9%	28.2	100.0%	41.3	98.0%	38.6	93.5%	43.0	
		31/33	11-92	37/37	17-129	48/49	11-177	43/46	9-276	
Pb	400	40.5%	326.5	27.0%	56-2,565	4.0%	129.0	10.6%	221.9	
		15/37	25-12,562	10/37	279.5	2/50	15-705	5/47	19-2,731	
Cr	64	90.3%	116.2	100.0%	161.2	100.0%	154.1	97.8%	154.1	
		28/31	59-165	36/36	82-525	49/49	65-393	45/46	55-280	
Cd	14/1.4	100.0%	71.5	100.0%	88.8	-	-	100.0%	37*	
		3/3	23-150	3/3	52-182			1/1	-	

Table 2.5. Akhtala Community: Results above MAC by Sections

* Only one measurement was done

Table 2.6 and 2.7 illustrate the results above CL by sample type and section. In all detected yard samples, 2.8% needed clean-up for Arsenic and 18.9% for Lead. Among garden samples, 27.0% needed clean-up for Lead and among kindergarten and school samples 10.0% needed clean-up for Arsenic and 5.0% for Lead. Among churchyard samples, 95.0% needed clean-up for Lead. According to Table 9, 40.5% and 27.0% of samples in "Transport" and "Svinets" Districts respectively exceeded clean-up level for Lead, whereas only 4.0% and 10.6% of samples in "Sarahart" and "Barit" Districts exceeded MAC for Lead.

70	_					Sampl	е Туре				
Metals	CT.	Yard		Garden		School & Kindergarten		Churchyard		Tailing Pond	
٧y	CL - mg kg	%↑CL	GM and Range of	%↑CL	GM and Range of	%↑CL	GM and Range of	%↑CL	GM and Range of	%↑CL	GM and Range of
Hear		n/N	all detected mg/kg	n/N	all detected mg/kg	n/N	all detected mg/kg	n/N	all detected mg/kg	n/N	all detected mg/kg
As	100	2.8%	36.9	0.0%	36.1	10.0%	49.4	0.0%	58.7	0.0%	21.5
		3/107	9-177	0/35	10-92	2/20	12-276	0/2	46-75	0/5	17-36
Pb	400	18.9% 21/111	230.1 15-12,562	27.0% 10/37	264.3 76-8,174	5.0% 1/20	130.5 19-592	95.0% 19/20	4841.1 263-30,083	0.0% 0/5	37.7 26-110

 Table 2.6. Akhtala Community: Results above CL by Sample Type

Table 2.7. Akhtala Community: Results above CL by Sections

	CL -					Sect	ions				
Metals	mg kg		nsport"	2 - "Sv Dist			rahart"	4 - "B Dist		5 - Chu	urchyard
			District GM and		strict District GM and GM and		GM and	Dist	GM and		
vy]		$\% \uparrow CL$	Range of	$\% \uparrow CL$	Range of	$\% \uparrow CL$	Range of	$\% \uparrow CL$	Range of	$\% \uparrow CL$	GM and Range of
Heavy			all		all		all		all		all detected
щ		n/N	detected mg/kg	n/N	detected mg/kg	n/N	detected mg/kg	n/N	detected mg/kg	n/N	mg/kg
As	100	0,0%	28.2	2,7%	41.3	2,0%	38.6	6,5%	43.0	0.0%	58.7
		0/33	11-92	1/37	17-129	1/49	11-177	3/46	9-276	0/2	46-75
Pb	400	40.5%	326.5	27.0%	279.5	4.0%	129.0	10.6%	221.9	95.0%	4841.1
		15/37	25-12,562	10/37	56-2,565	2/50	15-705	5/47	19-2,731	19/20	263-30,083

Picture 2. Akhtala Community: Map with highlighted sectors.

After careful testing of 202 residential soil samples in the Akhtala Community, the results indicate that 93.6% of all detected measurements exceeded MAC for Arsenic, 26.7% for Lead, 97.9% for Chromium and 100% for Cadmium. Background testing (aimed to identify the natural level of heavy metals in the community and to compare the soil sample results with background levels) showed that Lead is below MAC and Cadmium is not detected in the measurements. Background level of Arsenic and Chromium exceeded the MAC in 44.0% and 49.5% of samples. According to the results, soil samples that need cleanup for Arsenic were observed in 2.9% of samples (3 yard samples and 2 samples from a school and a kindergarten) and 26.7% for Lead. Out of 54 samples that need cleanup due to lead contamination, 19 were from the churchyard (35.2%). Therefore immediate actions should be taken to remediate the churchyard soil, which is the most popular public meeting and entertainment location in the community.

3. Armanis Community

Agricultural and residential soil samples were collected and tested from the Armanis Community when performing the field work for the thorough risk assessment in September of 2013. A total 103 soil samples (51from yards, 26 from gardens, 20 from a school and a kindergarten and 6 for background measurements at surface,10 and 20cm depth inside and outside of the community) were collected throughout the community, prepared in the laboratory and tested via XRF Spectrometer. The testing process took place in December of 2013. The duration of testing time was 90 seconds. Samples with below LOD test results were retested again with the testing time of 240 seconds in March (or April) of 2014. The testing results were compared with three reference levels: Maximum Allowable Concentrations (MAC), Clean up Levels (CL) and Highest Background Level (HBL) of 10cm, 20 cm depth (see Table 3).

	• •
Heavy metals	Range (mg/kg)
As	9-25
Pb	68-140
Cr	98-391
Cd	-

 Table 3.0 Armanis community: Range of background measurements

Heavy	MAC	CL	HBL (10, 20 cm depth)
Metals	mg/kg	mg/kg	mg/kg
Re	esidential/ Agricultural		
As	12	100	31
Pb	400	400	140
Cr	64	_*	391
Cd	14/1.4	_*	Not detected

Table 3.1. Armanis Community: Reference Levels for Comparison

* Not identified

Some measurements of the soil samples were below LOD of the XRF analyzer. The results of undetected measurements are presented in Table 3.2. When the analyzer could not detect the analyte of interest, calculated LOD was provided which is determined by multiplying the error of each measurement's statistics by three times. Results illustrated that the calculated LOD differed for each measurement. Table 3.2 presents the undetected measurements of soil samples for which the calculated LOD was above MAC. Results of table 3.2 show that Arsenic was not detected in 6.8% of total samples, however, lead was detected in all samples. Chromium was not detected in 5.8% samples and Cadmium was not detected in 98.1% of samples. Chromium in 1.9% of samples and Cadmium in 98.1% of samples.

Heavy Metals		% of undetected measurements out of total	% out of total above MAC
	MAC mg/kg	n/N	n/N
		Range of LOD's mg/kg	Range of LOD's above MAC mg/kg
	Residential/ Agricultural		
As	12	6.8%	2.9%
		7/103	3/103
		10-18	17-18
Pb	400	0%	0.0%
		0/103	0/103
		-	-
Cr	64	5.8%	1.9%
		6/103	2/103
		45-107	69-107
Cd	14/1.4	98.1%	98.1%
		101/103	101/103
		17-33	17-33

Table 3.2. Armanis Community: Undetected Measurements

All undetected measurements were excluded from further analysis. Table 3.3 presents the percentage of all samples exceeding the three reference levels - MAC, HBL (depth 10cm, 20 cm), CL as well as the GM and the range of all detected measurements. According to the results, 82.3% of Arsenic samples, 5.8% of Lead samples, 100% of Chromium and Cadmium samples exceeded the MAC. Out of all samples, 1.0% exceeded Cl for Arsenic and 5.8% for Lead. Out of all samples, 7.3% of Arsenic, 25.2% of Lead and 6.2% of Chromium samples exceeded HBL.

	MAC mg/kg	% above MAC out of detected		% above CL level out of detected	HBL	% above HBL out of detected	
Heavy Metals	tial/ ural	n/N	CL mg/kg	n/N	(depth 10cm, 20	n/N	
Hea	Residential/ Agricultural	GM and Range of all detected mg/kg		GM and Range of all detected mg/kg		GM and Range of all detected mg/kg	
As	12	82.3%	100	1.0%	31	7.3%	
		79/96		1/96		7/96	
		17.5		17.5		17.5	
		8-169		8-169		8-169	
Pb	400	5.8%	400	5.8%	140	25.2%	
		6/103		6/103		26/103	
		93.8		93.8		93.8	
		19-3353		19-3353		19-3353	
Cr	64	100.0%	*		391	6.2%	
		97/97				6/97	
		183.2				183.2	
		67-1201				67-1201	
Cd	14/1.4	100.0%	*		Not		
		2/2			Detected		
		39.6					
		32-49					
*	Not identif	· 1					

Table 3.3. Armanis Community: Comparison of Results to MAC, HBL (depth 10cm, 20 cm) and CL

* Not identified

Table 3.4 presents the results exceeding MAC by sample type, GM and the range of all detected measurements. Results show that yard soil samples exceeded MAC by 82.2% for Arsenic, 9.8% for Lead, 100.0% for Chromium and 100.0% for Cadmium. In garden soil samples, measurements exceeded MAC for Arsenic in 84.0% of samples, for Lead in 3.8% of samples and for Chromium in 100.0% of samples. In school and kindergartens measurements, results exceeded MAC for Arsenic in 80.0% of samples and for Chormium in 100.0% of samples. Cadmium was not detected in garden, school and kindergarten soil measurements. Samples from schools and kindergartens did not exceed MAC for Lead.

	MAC Mg/kg				Soil Sam	ple Type			
etals		Ya	ard	Gai	rden		ool & rgarten	Backg	ground
Heavy metals	Residential/ Agricultural	%↑ MAC	GM and Range of all						
H	Re Agi	n/N	detected mg/kg	n/N	detected mg/kg	n/N	detected mg/kg	n/N	detected mg/kg
As	12	82.2%	17.1	84.0%	16.7	80.0%	19.7	83.3%	17.2
AS	12	37/45	8-169	21/25	10-32	16/20	10-72	5/6	9-31
Pb	400	9.8%	135.6	3.8%	51.4	0.0%	79.5	0.0%	95.4
10	400	5/51	35-3353	1/26	19-676	0/20	24-283	0/6	68-140
Cr	64	100.0%	191	100.0%	174.6	100.0%	178.6	100.0%	175.9
Cr	04	47/47	67-1201	26/26	101-377	18/18	79-548	6/6	98-391
Cd	14/1.4	100.0%	39.6	-	-	-	-	_	-
Cu	14/1.4	2/2	32-49	-	-	-	-	-	-

 Table 3.4. Armanis Community: Results above MAC by Sample Type

 MAC

4. Metz Ayrum Community

Agricultural and residential soil samples were collected and tested from the Metz Ayrum Community during the field work for the thorough risk assessment in September of 2013. A total 106 soil samples (60 from yards, 30 from gardens, 10 from a school and a kindergarten and 6 for background measurements at surface 10cm and 20cm depth inside and outside of the community) were collected from the entire community, prepared in the laboratory and tested via XRF Spectrometer. The testing process took place in January of 2014 using 90 seconds as the testing time. Samples with below LOD were retested again with a testing time of 240 seconds in March (or April) or 2014. The testing results were compared with three reference levels: Maximum Allowable Concentrations (MAC), Clean up Levels (CL) and Highest Background Level (HBL) of 10cm, 20 cm depth (see Table 4.1).

Table 4.0 Metz Ayrum community: Range of background measurements

Heavy metals	Range (mg/kg)
As	24-56
Pb	29-88
Cr	98-203
Cd	-

Heavy	MAC	CL	HBL (10cm, 20 cm depth)
Metals	mg/kg	mg/kg	mg/kg
R	esidential/ Agricultural		
As	12	100	56
Pb	400	400	75
Cr	64	_*	203
Cd	14/1.4	_*	Not detected

 Table 4.1. Metz Ayrum Community: Reference Levels for Comparison

* Not identified

Some measurements of the soil samples were below LOD of the XRF analyzer. The results of undetected measurements are presented in Table 4.2. If the analyzer could not detect the analyte of interest, it provided the calculated LOD which is determined by multiplying three times the error of counting statistics of each measurement. The calculated LOD differed for each measurement. Table 4.2 presents the undetected measurements for which the calculated LOD was above MAC. Results of table 4.2 show that for Arsenic, Lead and Chromium, only in a few samples the analyte of interest was not detected and the calculated LOD was below the MAC for all measurements. However, the results for Cadmium are completely different: all measurements were below the LOD of the instrument and calculated LOD of all those measurements exceeded MAC.

Heavy Metals		% of undetected measurements out of total	% out of total above MAC	
	MAC mg/kg	n/N	n/N	
		Range of LOD's mg/kg	Range of LOD's above MAC mg/kg	
-	Residential/Agricultural			
As	12	2.8%	0.0%	
		3/106	0/106	
		10-12	-	
Pb	400	0%	0.0%	
		0/106	0/106	
		-	-	
Cr	64	3.8%	0.0%	
		4/106	0/106	
		37-51	-	
Cd	14/1.4	100.0%	100.0%	
		106/106	106/106	
		15-33	15-33	

Table 4.2. Metz Ayrum Community: Undetected Measurements

All undetected measurements were excluded from further analysis. Table 4.3 presents the percentage of samples out of the total samples that exceeded the three reference levels -MAC, HBL (depth of 10cm, 20 cm), CL in addition to the GM and the range of all detected measurements. According to the results, 99% of all samples tested exceeded MAC for Arsenic and 100% for Chromium. None of the samples exceeding MAC for Lead and there is no detected measurement for Cadmium. None of the measurements exceeded CL for Arsenic and Lead. The results exceeded HBL measurements in 1.9% cases for Arsenic, 19.8% cases for Lead, and 6.9% cases for Chromium.

Table 4.3. Metz Ayrum Community: Comparison of Results to MAC, HBL (depth 10cm, 20 cm) and CL

MAC B% above MAC out of detectedCL mg/kg	% above CL level out of detected (depth	% above HBL out of detected
---	---	-----------------------------

	al/ ral	n∕N Teren		n/N n/N		n/N	10cm, 20 cm)	n/N
	Residential/ Agricultural	GM and Range of all detected mg/kg		GM and Range of all detected mg/kg		GM and Range of all detected mg/kg		
As	12	99.0%	100	0.0%	56	1.9%		
		102/103		0/103		2/103		
		24.4		24.4		24.4		
		9-64		9-64		9-64		
Pb	400	0.0%	400	0.0%	75	19.8%		
		0/106		0/106		21/106		
		54.9		54.9		54.9		
		19-359		19-359		19-359		
Cr	64	100.0%	*		203	6.9%		
		102/102				7/102		
		127				127		
		75-312				75-312		
Cd	14/1.4	-	*		Not Detected			

* Not identified

Table 4.4 presents the results exceeding MAC by sample type, GM and range of all detected measurements. Results show that Arsenic is above MAC in all garden, school and kindergarten samples and in 98.2% of yard soil samples. In all yard, garden school and kindergarten samples, Chromium levels exceed MAC. None of the samples were above MAC for Lead.

	MAC Mg/kg	Soil Sample Type							
tals		Yard		Garden		School & Kindergarten			
Heavy metals	Residential/ Agricultural	%↑ MAC n/N	GM and Range of all detected mg/kg	%↑ MAC n/N	GM and Range of all detected mg/kg	%↑ MAC n/N	GM and Range of all detected mg/kg		
As	12 -	98.2%	23.1	100.0%	27.4	100.0%	20.8		
		<u>56/57</u> 0.0%	<u>9-64</u> 60.2	30/30	<u>18-61</u> 48.1	10/10	<u>13-37</u> 48.7		
Pb	400 -	0.0%	19-359	0.0%	48.1	0.0%	<u>48.7</u> 29-113		

Table 4.4. Metz Ayrum Community: Results above MAC by Sample Type

Cr	64	100.0%		100.0%			131.6
		56/56	75-312	30/30	81-181	10/10	91-268
Cd	14/1.4 -	-	-	-	-	-	-
	14/1.4 -	-	-	-	-	-	-

5. Chochkan Community

The field work for the thorough risk assessment in Chochkan Community was completed in September of 2013. A total of 166 soil samples were collected throughout the community from the residential and agricultural soil. The samples were prepared in the laboratory and tested via XRF Spectrometer. Out of the 163 soil samples, 100 were from the yards, 50 from gardens, 10 from a school and a kindergarten and 6 for background measurements at surface,10 and 20cm depth inside and outside of the community (range of background measurements presented in the Table 5.0). The testing process took place in December of 2013. The duration of testing time was 90 seconds. Samples having test results below the LOD were retested again with the testing time of 240 seconds in March (or April) of 2014. The testing results were compared with three reference levels: Maximum Allowable Concentrations (MAC), Clean up Levels (CL) and Highest Background Level (HBL) of 10cm, 20 cm depth (see Table 5.1).

 Table 5.0 Chochkan community: Range of background measurements

Heavy metals	Range (mg/kg)
As	24-83
Pb	38-111
Cr	109-203
Cd	-

Heavy	MAC	CL	HBL (10cm, 20 cm depth)
Metals	mg/kg	mg/kg	mg/kg
Re	esidential/ Agricultural		<u> </u>
As	12	100	83
Pb	400	400	94
Cr	64	_*	203
Cd	14/1.4	_*	Not detected

Table 5.1. Chochkan Community: Reference Levels for Comparison

* Not identified

Some measurements of the community soil samples were below LOD of the XRF analyzer. The results of undetected measurements are presented in Table 5.2. If the analyzer could not detect the analyte of interest, it provided determined LOD which is calculated by multiplying three times the error of the counting statistics of each measurement. Calculated LOD differed for each measurement. Table 5.2 presents the undetected measurements for which the calculated LOD was above MAC. Results of table 5.2 shows that for Arsenic, Lead and Cromium there are very few samples with the not detected analyte of interest and the calculated LOD was below the MAC for all Lead and Chromium measurements and above only in 0.6% for Arsenic, however the results for Cadmium are completely different: all measurements were below the limit of detection of the instrument and calculated LOD of all those measurements exceeded MAC.

Heavy Metals		% of undetected measurements out of total	% out of total above MAC	
	MAC mg/kg	n/N	n/N	
		Range of LOD's mg/kg	Range of LOD's above MAC mg/kg	
	Residential/ Agricultural			
As	12	2.4%	0.6%	
		4/166	1/166	
_		7-16	16	
Pb	400	0.6%	0.0%	
		1/166	0/166	
		9	-	
Cr	64	2.4%	0.0%	
		4/136	0/166	
		54-61	-	
Cd	14/1.4	100.0%	100.0%	
		166/166	166/166	
		18-39	18-39	

All undetected measurements were excluded from further analysis. Table 5.3 presents the percentage of samples out of the total samples that exceeded the three reference levels -MAC, HBL (depth 10cm, 20 cm), CL as well as the GM and the range of all detected measurements. According to the results 91.4% of all testing exceeded MAC for Arsenic, 1.2% for Lead and 96.9% for Chromium. There is no detected measurement for Cadmium. In 0.6% testing results exceeded Cl for arsenic and in 1.2% for Lead. The results exceeded highest background measurements for Arsenic only in 0.6% testing, for Lead in 12.1% and for Chromium in 7.4% testing.

Table 5.3. Chochkan community: Comparison of Results to MAC, HBL (depth 10cm, 20 cm) and CL

	MAC mg/kg	% above MAC out of detected		% above CL level out of detected	HBL	% above HBL out of detected n/N	
Heavy Metals	ial/ ıral	n/N	CL mg/kg	n/N	(depth 10cm, 20		
Heav	Residential/ Agricultural	GM and Range of all detected mg/kg	GM and Range of all detected mg/kg		cm)	GM and Range of all detected mg/kg	
As	12	91.4%	100	0.6%	83	0.6%	
		148/162		1/162		1/162	
		20.8		20.8		20.8	
		7-115		7-115		7-115	
Pb	400	1.2%	400	1.2%	94	12.1%	
		2/165		2/165		20/165	
		51.7		51.7		51.7	
		17-621		17-621		17-621	
Cr	64	96.9%	*		203	7.4%	
		157/162				12/162	
		126.2				126.2	
		55-571				55-571	
Cd	14/1.4	-	*		Not		
					Detected		

* Not identified

Table 5.4 presents the results exceeding MAC by sample type, GM and range of all detected measurements. Results show that in yard soil samples 93.8% exceeded MAC for Arsenic, in 1.0% for Lead and in 98.0% for Chromium. In 84.0% and 93.8% of garden soil testing results

exceeded MAC for Arsenic and Chromium respectively. In school and kindergarten testing 100.0% exceeded MAC for Arsenic, 10.0% for Lead and 100.0% for Chromium. There is no measurements exceeding MAC for Lead in garden soil tests. The instrument was not able to detect Cadmium in any of measurements.

	MAC Mg/kg	Soil Sample Type								
tals		Yard		Gar	Garden		School & Kindergarten		Background	
Heavy metals	Residential/ Agricultural	%↑ MAC	GM and Range	%↑ MAC	GM and Range	%↑ MAC	GM and Range	%↑ MAC	GM and Range	
He		n/N	of all detected mg/kg	n/N	of all detected mg/kg	n/N	of all detected mg/kg	n/N	of all detected mg/kg	
		93.8%	19.3	84.0%	19.6	100.0%	34.2	100.0%	51.2	
As	12 -	90/96	10-54	42/50	7-115	10/10	18-82	6/6	24-83	
Pb	400 -	1.0%	55.7	0.0%	42.0	10.0%	57.2	0.0%	70.5	
10		1/99	17-581	0/50	20-226	1/10	24-621	0/6	38-111	
Cr	64 -	98.0%	128.1	93.8%	115.9	100.0%	163.7	100.0%	136.2	
	01	98/100	58-326	45/48	55-356	8/8	101-571	6/6	109-203	
Cd	14/1.4 -	-	-	-	-	-	-	-	-	
Cu	14/1.4 -	-	-	-	-	-	-	-	-	

 Table 5.4. Chochkan community: Results above MAC by Sample Type

II. Syunik region communities

6. Agarak community

The field work for the thorough risk assessment in Agarak Community was conducted in August of 2013. The entire town was divided into four sectors (see Picture 3.) and a total of 185 soil samples were collected from the residential and agricultural areas of the community. The samples were prepared in the laboratory and tested via XRF Spectrometer. Out of 185 soil samples, 91 were collected from yards, 75 from gardens, 10 from a school and a kindergarten and 9 for background measurements at surface, 10 and 20cm depth inside and outside of the community (range of background measurements presented in the Table 6.0). The testing process took place in January of 2014. The duration of testing time was 90 seconds. Samples with test

results below the LOD were retested again using 240 seconds as the testing time. The results were compared with three reference levels: Maximum Allowable Concentrations (MAC), Clean up Levels (CL) and Highest Background Level (HBL) of 10cm, 20 cm depth (see Table 6.1).

 Table 6.0 Agarak community: Range of background measurements

Heavy metals	Range (mg/kg)
As	9-27
Pb	22-178
Cr	60-217
Cd	-

Heavy Metals	MAC mg/kg	CL mg/kg	HBL (10cm, 20 cm depth) mg/kg
	sidential/ Agricultural	8 8	88
As	12	100	17
Pb	400	400	178
Cr	64	_*	215
Cd	14/1.4	_*	Not detected

* Not identified

Some community soil sample test results (e.g., yard, gardens, schools and kindergartens) were below the LOD of the XRF analyzer. The results of the undetected measurements are presented in Table 6.2. According to the results, Arsenic was not detected in 14.6% of samples and calculated LOD was above MAC in 1.1% of samples, Furthermore, Lead was not detected in 2.4% of samples and the calculated LOD was below the MAC. Even though, Chromium was detected in all samples, Cadmium was not detected in all the samples where the LOD was above MAC.

Heavy Metals		% of undetected measurements out of total	% out of total above MAC
	MAC mg/kg	n/N	n/N
		Range of LOD's mg/kg	Range of LOD's above MAC mg/kg
	Residential/ Agricultural		
As	12	14.6%	1.1%
		27/185	2/185
		5-14	13-14
Pb	400	2.4%	0.0%
		2/185	0/185
		7-8	-
Cr	64	0.0%	0.0%
		0/185	0/185
		-	-
Cd	14/1.4	100.0%	100.0%
		185/185	185/185
		15-36	15-36

Table 6.2. Agarak Community: Undetected Measurements

All undetected measurements were excluded from further analysis. Table 6.3 presents the percentage of samples out of the total samples that exceeded the three reference levels - MAC, HBL (depth 10cm, 20 cm), CL as well as the GM and the range of all detected measurements. According to the results, 31.0% of the detected samples exceeded MAC for Arsenic, 0.5% for Lead, and 96.2% for Chromium. GM for Chromium exceeds the MAC 2.1 times. Clean-up level exceeds only for Lead in 0.5% samples.

For Arsenic, Lead and Chromium results exceeded HBL by 5.1%, 3.8% and 7.0% accordingly while Cadmium was not detected in the soil. These numbers are less than the percentages exceeding MAC, which could suggest that the natural background concentration of heavy metals in the community is high. There were also some samples that exceed even the high background concentrations.

tals	MAC mg/kg	% above MAC out of detected		% above CL level out of detected	HBL	% above HBL out of detected
Heavy Metals	ial/ ıral	n/N	CL mg/kg	n/N	(depth 10cm, 20	n/N
Heav	Resident Agricultu	in the second se	GM and Range of all detected mg/kg GM and R of all detected mg/kg	GM and Range of all detected mg/kg	cm) G	GM and Range of all detected mg/kg
As	12	31.0%	100	0.0%	17	5.1%
		49/158		0/158		8/158
		11.1		11.1		11.1
		5-27		5-27		5-27
Pb	400	0.5%	400	0.5%	178	3.8%
		1/183		1/183		7/183
		48.6		48.6		48.6
		13-552		13-552		13-552
Cr	64	96.2%	*		215	7.0%
		178/185				13/185
		135.4				135.4
		50-671				50-671
Cd	14/1.4	-	*		Not	
					Detected	

Table 6.3. Agarak Community: Results Compared to MAC, HBL (depth 10cm, 20 cm) and CL

* Not identified

Table 6.4 presents the results exceeding MAC by sample type, GM and range of all detected measurements. The results show that in yard soil samples 23.3% exceeded MAC for Arsenic, in 1.1% for Lead and 96.7% in Chromium. In 36.2% and 97.3% of garden soil testing results exceeded MAC for Arsenic and Chromium respectively. In school and kindergarten testing 40.0% exceeded MAC for Arsenic and 90.0% for Chromium. There weren't any samples that exceeded the MAC for Lead among the garden, school and kindergarten soil samples. Furthermore, the instrument was not able to detect Cadmium in any of the samples.

	MAC Mg/kg				Soil Samp	ole Type	
Heavy metals		Ya	rd	Gar	Garden		ol & garten
m	esidential/ gricultural	%↑	GM and	%↑	GM and	%↑	GM and
vy	Residential Agricultura	MAC	Range of	MAC	Range of	MAC	Range of
lea	sid		all		all		all
	Ag Ag	n/N	detected	n/N	detected	n/N	detected
			mg/kg		mg/kg		mg/kg
As	12 -	23.3%	10.5	36.2%	11.5	40.0%	11.4
AS		17/73	5-20	25/69	7-22	4/10	9-16
Pb	400 -	1.1%	64.8	0.0%	34.7	0.0%	40.4
гu	400 -	1/91	16-552	0/73	13-236	0/10	18-88
Cr	64 -	96.7%	132.3	97.3%	139.8	90.0%	139.5
Ur	04 -	88/91	61-488	73/75	50-671	9/10	64-492
Cd	14/1.4 -	_	_	-	_	-	-
Cu	14/1.4 -	-	-	-	-	-	-

Table 6.4. Agarak Community: Results above MAC by Sample Type

Table 6.5 presents the results that are above MAC and they are introduced according to sections. Results show that the highest GM for Arsenic (12.4mg/kg) and the highest percentage of samples exceeding MAC (47.2%) can be found in Section 4. In Section 2, Lead exceeded MAC (2.4%) in one sample only. Chromium was distributed evenly in the community and 92.7 to 97.4% of samples across all sections exceeded MAC. Table 6.6 shows the results that were above MAC by CL. Only one yard soil sample exceeded CL for Lead and none for Arsenic. Table 6.7 summarizes the results of soil samples collected from the designated four sections that exceeded the CL. The sample that needs clean-up for Lead was collected from Section 2.

Picture 3. Agarak Community: Map with highlighted sectors.

	MAC				Secti	ons			
als	mg/kg]	1		2		3	4	ł
Heavy metals	Residential/ Agricultural	%↑ MAC	GM and Range of all						
Н	Resi Agri	n/N	detected mg/kg	n/N	detected mg/kg	n/N	detected mg/kg	n/N	detected mg/kg
As	12	16.1%	10.7	18.2%	9.9	32.7%	11.1	47.2%	12.4
		5/31	6-19	6/33	7-15	18/55	5-20	17/36	7-22
Pb	400	0.0%	53.0	2.4%	53.9	0.0%	56.4	0.0%	30.3
		0/39	19-330	1/41	16-552	0/63	18-249	0/35	13-236
Cr	64	97.4%	137.9	92.7%	117.9	96.8%	138.2	97.3%	143.6
		38/39	61-283	38/41	58-290	61/63	62-492	36/37	50-671
Cd	14/1.4	-	-	-	-	-	-	-	-

Table 6.5. Agarak Community: Results above MAC by Sections

 Table 6.6. Agarak Community: Results above CL by Sample Type

S				Sample Typ	e			
Metals	CL	Yard		Garden		School & Kindergarten		
V N	mg kg	%↑CL	GM and	%↑CL	GM and	%↑CL	GM and	
Heavy	88	70 CL	Range of	70 CL	Range of	70 CL	Range of	
Η			n/N	all detected	n/N	all detected	n/N	all detected
		11/18	mg/kg	11/18	mg/kg	11/18	mg/kg	
As	100 0.0%		10.5	0.0%	11.5	0.0%	11.4	
AS	100	0/73	5-20	0/69	7-22	0/10	9-16	
Pb	400	1.1%	64.8	0.0%	34.7	0.0%	40.4	
P0	400	1/91	16-552	0/73	13-236	0/10	18-88	

	CL				Sect	ions			
Metals	mg kg		1	ź	2	•	3		4
M			GM and		GM and		GM and		GM and
Heavy		$\% \uparrow CL$	Range of						
lea			all		all		all		all
H		n/N	detected	n/N	detected	n/N	detected	n/N	detected
			mg/kg		mg/kg		mg/kg		mg/kg
As	100	0.0%	10.7	0.0%	9.9	0.0%	11.1	0.0%	12.4
		0/31	6-19	0/33	7-15	0/55	5-20	0/36	7-22
Pb	400	0.0%	53.0	2.4%	53.9	0.0%	56.4	0.0%	30.3
		0/39	19-330	1/41	16-552	0/63	18-249	0/35	13-236

Table 6.7. Agarak Community: Results above CL by Sections

7. Artsvanik Community

The field work for the thorough risk assessment in Artsvanik Community was performed in September of 2013. A total of 113 soil samples were collected from the residential and agricultural areas of the community, prepared in the laboratory and tested via XRF Spectrometer. Out of the 113 soil samples, 66 were yards, 30 from gardens, 10 from a school and a kindergarten in addition to 6 soil samples collected for background measurements at surface, 10 and 20cm depth inside and outside of the community (range of background measurements presented in the Table 7.0). The testing process took place in January of 2014. The duration of testing time was 90 seconds. Samples having test results below the LOD were retested again with the testing time of 240 seconds in March (or April) of 2014. The results were compared with three reference levels: Maximum Allowable Concentrations (MAC), Clean up Levels (CL) and Highest Background Level (HBL) of 10cm, 20 cm depth (see Table 7.1).

 Table 7.0 Artsvanik community: Range of background measurements

Heavy metals	Range (mg/kg)
As	7-12
Pb	8-11
Cr	62-123
Cd	-

Heavy	MAC	CL	HBL (10cm, 20 cm depth)
Metals	mg/kg	mg/kg	mg/kg
Re	esidential/ Agricultural		
As	12	100	10
Pb	400	400	11
Cr	64	_*	123
Cd	14/1.4	_*	Not detected

Table 7.1. Artsvanik Community: Reference Levels for Comparison

* Not identified

Some measurements of the community soil samples were below the LOD of the XRF analyzer. The results of these undetected measurements are presented in Table 7.2. If the analyzer could not detect the analyte of interest, it provided the calculated LOD which is determined by multiplying the error of counting statistics of each measurement by three times. Calculated LOD differed for each measurement. Table 7.2 presents the undetected measurements of the samples for which the calculated LOD was above MAC. Table 7.2 results show that in 8.0% of the

samples Arsenic was not detected and 2.7% of the samples were above the MAC. The instrument was able to detect Lead in all the samples. Chromium was not detected in 6.2% of the samples only and all the calculated LOD was below the MAC. For all the samples, Cadmium was not detected and the calculated LOD were above the MAC. Failure to detect an analyte of interest is not a sign of low concentration but the physical matrix of the soil could disrupt the detection ability of the instrument. The analyzer was actually able to detect Chromium in all the samples.

Heavy Metals	% of undetected measurements out of total		% out of total above MAC	
	MAC mg/kg	n/N	n/N	
		Range of LOD's mg/kg	Range of LOD's above MAC mg/kg	
	Residential/ Agricultural			
As	12	8.0%	2.7%	
		9/113	3/133	
		4-16	16	
Pb	400	0.0%	0.0%	
		0/113	0/113	
		- -	-	
Cr	64	6.2%	0.0%	
		7/113	0/113	
		50-64	-	
Cd	14/1.4	100.0%	100.0%	
	· · ·	113/113	113/113	
		17-34	17-34	

 Table 7.2. Artsvanik Community: Undetected Measurements

All undetected measurements were excluded from further analysis. Table 7.3 presents data on the percentage of the samples out of the total that exceeded the three reference levels - MAC, HBL (depth 10cm, 20 cm), CL as well as the GM and the range of all detected measurements. According to the results, 51.0% of all detected measurements exceeded MAC for Arsenic, 0.9% for Lead (however 91.2% of samples exceeded HBL for Lead), 96.2% for Chromium. GM of detected measurements for Chromium exceeded MAC by 1.8 times. For Lead, 0.9% of soil

samples need clean-up. CL for Chromium and Cadmium were not identified during the literature review and standards were substantially different across countries. Results show that, 76.9% of Arsenic, 91.2% of Lead and 47.2% of Chromium exceeded the highest background measurements (Cadmium was not detected in the soil). This indicates that the surface level exposure is much higher even in comparison with the highest background measurement thus suggesting external pollution.

	MAC mg/kg	% above MAC out of detected		% above CL level out of detected	HBL	% above HBL out of detected	
Heavy Metals	tial/ ural	n/N	CL mg/kg	n/N	(depth 10cm, 20	n/N	
Heav	Residential/ Agricultural	GM and Range of all detected mg/kg	0 0	GM and Range of all detected mg/kg		GM and Range of all detected mg/kg	
As	12	51.0%	100	0.0%	10	76.9%	
		53/104		0/104		80/104	
		12.9		12.9		12.9	
		5-28		5-28		5-28	
Pb	400	0.9%	400	0.9%	11	91.2%	
		1/113		1/113		103/113	
		32.3		32.3		32.3	
		7-672		7-672		7-672	
Cr	64	96.2%	*		123	47.2%	
		102/106				50/106	
		117.9				117.9	
		58-203				58-203	
Cd	14/1.4	-	*		Not		
					Detected		

Table 7.3. Artsvanik Community: Results Compared to MAC, HBL (depth 10cm, 20 cm) and CL

* Not identified

Table 7.4 presents the results exceeding the MAC by sample type, GM and range of all detected measurements. Results show that 58.1% of yard soil samples exceeded the MAC for Arsenic, 1.5% for Lead, 95.2% for Chromium. In garden soil samples, the results exceeded the MAC for Arsenic in 44.8% of the samples and for Chromium in 100.0% of the samples. School and kindergarten sample results exceeded the MAC for Arsenic in 50.0% of the samples and Chromium in 100.0% of the samples. School and kindergarten soil samples have the highest GM for both Arsenic and Chromium in comparison to the yard and garden soil samples of the

community. Cadmium was not detected in any of the samples. The samples collected from the school and kindergarten areas did not exceed the MAC for Lead.

Table 7.4. Artsvanik Community: Results above MAC by Sample Type								
	MAC Mg/kg	Soil Sample Type						
		Yar	ď	Garc	len	Schoo	ol &	
S						Kinderg	garten	
etal	、	%↑	GM	%↑	GM	%↑	GM	
me	ial/ ıral	MAC	and	MAC	and	MAC	and	
vy	esidential/ gricultural		Range		Range		Range	
Heavy metals	side	n/N	of all	n/N	of all	n/N	of all	
H	Residential Agricultura		detecte		detecte		detecte	
			d		d		d	
			mg/kg		mg/kg		mg/kg	
	10	58.1%	13.6	44.8%	12	50.0%	14.1	
As	12 -	36/62	5-28	13/29	6-20	4/8	10-14	
Pb	400	1.5%	33.4	0.0%	25.7	0.0%	89.9	
PD	400 -	1/66	10-672	0/30	7-172	0/10	26-278	
Cr	61	95.2%	117.8	100.0%	118.4	100.0%	125.4	
Cr	64 -	59/62	58-199	29/29	65-201	10/10	70-203	
Cd	14/1.4 -	-	-	-	-	-	-	
Cd	14/1.4 -	-		-	-	-	-	

8. Kajaran Community

. . .

The Thorough Risk Assessment field work in Kapan community took place in August-September of 2013. The town was divided into three sectors (see Picture 4). The investigators collected 279 soil samples: 250 from yards, 20 from schools and kindergartens, 9 for background purposes at surface, 10 and 20cm depth inside and outside of the community (range of background measurements presented in the Table 8.0).

Soil samples were prepared in the laboratory following the protocol developed based on review of international guidelines. The preparation process for soil samples took place in December of 2013 and it included drying, homogenization and sieving. The prepared soil samples were tested by the XRF analyzer (INNOV-X α -2000) based on the protocol developed for soil testing. The testing process took place in December of 2013 using 90 seconds as the duration of testing time. Samples displaying test results below the LOD and above the MAC

were retested again in March-April of 2014 using 240 seconds as the testing time. The results were compared with three reference levels: Maximum Allowable Concentrations (MAC), Clean up Levels (CL) and Highest Background Level (HBL) of 10cm, 20 cm depth (see Table 8.1).

Heavy metals	Range (mg/kg)
As	8-35
Pb	35-129
Cr	74-296
Cd	-

 Table 8.0 Kajaran community: Range of background measurements

Heavy Metals	MAC	CL	HBL (10cm, 20 cm depth)
Wittun 5	mg/kg	mg/kg	mg/kg
Re	sidential/ Agricultural		
As	12	100	35
Pb	400	400	129
Cr	64	_*	238
Cd	14/1.4	_*	Not Detected

* Not identified

Some measurements of the community soil samples (in yards, schools and kindergartens) were below the LOD of the XRF analyzer. The results of undetected measurements are presented in Table 8.2. When the analyzer could not detect the analyte of interest, calculated LOD was provided which is counted as three times the error of counting statistics of each measurement. Interestingly, calculated LOD differed for each measurement. Table 8.2 presents undetected measurements for which the calculated LOD was above MAC. Results of Table 8.2 show that in 1.8% of the samples Arsenic was not detected and 1.7% of the samples were above the MAC. The instrument was unable to detect any Lead in one sample only, but that sample was below the MAC. In 9.6% of the samples, Cadmium was not detected and the calculated LOD for all these samples were above the MAC. This indicates that failure to detect an analyte of interest is not a sign of low concentration of that analyte but the physical characteristics of the soil could

influence the detection ability of the instrument. However, the analyzer was able to detect Chromium in all the samples.

Heavy Metals		% of undetected measurements out of total	% out of total above MAC	
	MAC mg/kg	n/N	n/N	
		Range of LOD's mg/kg	Range of LOD's above MAC mg/kg	
	Residential/ Agricultural			
As	12	1.8%	1.7%	
		5/279	4-279	
		10-304	20-304	
Pb	400	0.4%	0.0%	
		1/279	0/279	
		8	-	
Cr	64	0.0%	0.0%	
		0/279	0/279	
		-	-	
Cd	14/1.4	99.6%	99.6%	
· · · ·		278/279	278/279	
·		19-50	19-50	

 Table 8.2. Kajaran Community: Undetected Measurements

All undetected measurements were excluded from further analysis. Table 8.3 presents the percentage of all samples that exceeded the three reference levels: MAC, HBL (depth 10cm, 20 cm), CL as well as the GM and the range of all detected measurements. According to the results, 97.4% of all detected measurements exceeded MAC for Arsenic, 3.2% for Lead, 100.0% for Chromium and 100.0% for Cadmium. GM of detected measurements for Arsenic exceeded MAC by 2.4 times, for Chromium by 3.4 times. For Arsenic, 0.7% of soil samples need clean-up and 3.2% for Lead. CL for Chromium and Cadmium were not identified during the literature review and standards were substantially different across countries.

According to the test results, 30.3% of Arsenic, 20.5% of Lead and 39.8% of Chromium exceeded the highest background measurements (Cadmium was not detected in the soil). This

indicates that the surface level exposure was higher even in comparison with the highest background measurement thus suggesting external pollution.

Table 8.3. Kajaran Community: Comparison of Results to MAC, HBL (depth 10 cm, 20
9cm) and CL

als	MAC mg/kg	% above MAC out of detected		% above CL level out of detected	Highest backgrou	% above HBL out of detected
Heavy Metals	tial/ ural	n/N	Clean-up level (CL) mg/kg	n/N	nd level (HBL)	n/N
Heav	Residen Agricult	Residential Residential Barial Barial Residential Residential Residential Barial Residential Residential Residential		GM and Range of all detected mg/kg	(depth 10, 20 cm)	GM and Range of all detected mg/kg
As	12	97.4%	100	0.7%	35	30.3%
		267/274		2/274		83/274
		28.9		28.9		28.9
		7-129		7-129		7-129
Pb	400	3.2%	400	3.2%	129	20.5%
		9/278		9/278		57/278
		84.0		84.0		84.0
		15-76052		15-76052		15-76052
Cr	64	100.0%	*		238	39.8%
		279/279				111/279
		215.6				215.6
		74-733				74-733
Cd	14/1.4	100%	*		Not	
		1/1			Detected	
		39				
		39				

* Not identified

Table 8.4 presents the results exceeding MAC by sample type, GM and the range of all detected measurements. The results shows that Arsenic concentration is very high in yard soil samples (98.0% exceeded MAC) and in schools/kindergartens testing (95.0% exceeded MAC). In 3.6% of yard testing lead exceeded MAC. In 100.0% of yard, schools and kindergartens testing Chromium exceeded MAC and Cadmium exceeded MAC in a detected measurement which was from the yard.

	MAC Mg/kg	Soil sample type						
Heavy metals		Ya	rd	Schools & Kindergartens				
me	ial/ iral	%↑	GM and	% ↑	GM and			
vy	Residential/ Agricultura	MAC	Range of	MAC	Range of			
lea	side		all		all			
Ħ	Re. ∆g	n/N	detected	n/N	detected			
			mg/kg		mg/kg			
_								
As	12 -	98.0%	29.1	95.0%	30.9			
AS	12	240/245	7-129	19/20	12-60			
Dh	400	3.6%	86	0.0%	66.3			
Pb	400 -	9/249	15-76052	0/20	29-163			
Cr	64 -	100.0%	218.7	100.0%	204.2			
Ur	04 -	250/250	75-733	20/20	206-531			
Cd	14/1.4 -	100.0%	39	-	-			
Cd	14/1.4 -	1/1	39	-	-			

 Table 8.4. Kajaran Community: Results above MAC by Sample Type

Table 8 shows the percentage of the samples exceeding the MAC by community sections. Among all the sections, all the samples exceeded the MAC for Chromium but only in Section 1 and 2 the samples exceeded the MAC for Arsenic. The concentration of Arsenic in Section 3 is also high and exceeded the MAC in 94.5% of the samples. The highest concentration of Lead was found in Section 1, where 6.7% of the samples exceeded the MAC and in one of the samples the concentration was extremely high (76,052 mg/kg). In Section 2, 2.3% of the samples and in Section 3 1.8% of the samples exceeded the MAC. Cadmium was detected in one sample only in Section 1 and that sample was above MAC.

als	MAC		-	Sec	tions					
	mg/kg	1		2		3				
Heavy metals	Residential/ Agricultural	%↑ MAC n/N	GM and Range of all detected mg/kg	%↑ MAC n/N	GM and Range of all detected mg/kg	%↑ MAC n/N	GM and Range of all detected mg/kg			
As	12	100.0%	28.5	100.0%	34.6	94.5%	26			

Table 8.5. Kajaran Community: Results above MAC by Sections

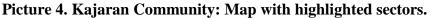
_		72/72	13-85	88/88	17-85	104/110	7-129
Pb	400	6.7%	94.2	2.3%	90.6	1.8%	75.3
		5/75	15-76052	2/88	29-1006	2/111	20-819
Cr	64	100.0%	210.6	100.0%	257	100.0%	194.5
		75/75	78-733	89/89	93-724	111/111	75-482
Cd	14/1.4	100.0%	39	-	-	-	-
_		1/1	39	-	-	-	-

Table 8.6 and 8.7 illustrate the results above CL by sample type and sections. In all the detected yard samples, 0.8% needed clean-up for Arsenic and 3.6% for Lead. According to Table 8.7, 1.8% of the samples in Section 3 exceeded CL for Arsenic. Moreover, in Sections 1, 2 and 3, 6.7%, 2.3% and 1.8% of the samples respectively exceeded CL for Lead.

	_	Sample type					
Heavy Metals	CL –	Yard		School & Kindergarten			
$rac{1}{2}$ mg/kg			GM and		GM and		
eav	mg mg	%↑CL	Range of	% ↑ CL	Range of		
H		n/N	all detected	n/N	all detected		
		11/18	mg/kg	11/18	mg/kg		
As	100	0.8%	29.1	0.0%	30.9		
		2/245	7-129	0/20	12-60		
Pb	400	3.6%	86	0.0%	66.3		
		9/249	15-76052	0/20	29-163		

 Table 8.6. Kajaran Community: Results above CL by Sample Type

 Sample type


Table 8.7. Kajaran Community	: Results above CL by Sections
------------------------------	--------------------------------

	CL Sections							
Heavy Metals	CL − mg kg	1		2		3		
Ň			GM and		GM and		GM and	
vy		$\% \uparrow CL$	Range of	%↑CL	Range of	%↑CL	Range of	
lea			all		all		all	
H		n/N	detected	n/N	detected	n/N	detected	
			mg/kg		mg/kg		mg/kg	
As	100	0.0%	28.5	0.0%	34.6	1.8%	26	
		0/72	13-85	0/88	17-85	2/110	7-129	
Pb	400	6.7%	94.2	2.3%	90.6	1.8%	75.3	
		5/75	15-76052	2/88	29-1006	2/111	20-819	

After accurate testing of 279 residential soil samples in the Kajaran Community, the results indicate that 97.4% of all detected measurements exceeded the MAC for Arsenic, 3.2% for Lead, 100.0% for Chromium and 100.0% for Cadmium. According to the results, soil

samples that need cleanup for Arsenic were observed in 0.7% of the samples (2 yard soil samples) and 3.2% for Lead (9 yard soil samples). Extremely high concentrations (76,052mg/kg) of Lead was found in one yard soil sample in Section 1, which exceeded MAC by 190.1 times.

9. Kapan Community

The thorough risk assessment field work in Kapan Community took place in September of 2013. The town was divided into five sectors (see Picture 5). The investigators collected 281 soil samples: 251 from yards, 21 from schools and kindergartens, 9 for background purposes at surface-level, as well as 10cm and 20cm depth samples from inside and outside of the community (range of background measurements presented in the Table 9.0). Soil samples were prepared in the laboratory following the protocol developed based on a review of international guidelines. The preparation process for soil samples took place in December of 2013 and it included drying, homogenization and sieving. The prepared soil samples were tested by the XRF analyzer (INNOV-X α -2000) based on the protocol developed for soil testing. The testing process took place in January of 2013 using 90 seconds as the duration of testing time. Samples displaying test results below the LOD and above the MAC were retested again in March-April of 2014 using 240 seconds as the testing time. The results were compared with three reference levels: Maximum Allowable Concentrations (MAC), Clean up Levels (CL) and Highest Background Level (HBL) of 10cm, 20 cm depth (see Table 9.1).

Heavy metals	Range (mg/kg)
As	12-39
Pb	13-157
Cr	90-181
Cd	-

Table 9.0 Kapan community: Range of background measurements

Heavy Metals	MAC mg/kg	CL mg/kg	HBL (10cm, 20 cm depth) mg/kg
	esidential/ Agricultural		
As	12	100	39
Pb	400	400	157
Cr	64	_*	177
Cd	14/1.4	_*	Not Detected

Table 9.1. Kapan Community: Reference Levels for Comparison

* Not identified

Some measurements of the community soil samples (e.g., from yards, schools and kindergartens) were below the LOD of the XRF analyzer. The results of undetected measurements are presented in Table 9.2. When the analyzer could not detect the analyte of interest, calculated LOD was provided which is counted as three times the error of counting statistics of each measurement. Interestingly, calculated LOD differed for each measurement. Table 9.2 presents undetected measurements for which the calculated LOD was above MAC. Results of Table 9.2 show that 1.8% of samples out of the total samples did not detect Arsenic and all undetected measurements were above MAC. In all of the samples, the analyzer was able to detect Lead. Chromium was not detected in 3.9% of samples, however, only in one sample (0.4%) was the calculated LOD above MAC. In 97.9% of samples, Cadmium was not detected measurement is not a sign of low concentration of the analyte of interest and the physical matrix of soil could influence the detection ability of the instrument.

Heavy Metals		% of undetected measurements out of total	% out of total above MAC	
	MAC mg/kg	n/N	n/N	
		Range of LOD's mg/kg	Range of LOD's above MAC mg/kg	
	Residential/ Agricultural			
As	12	1.8%	1.8%	
		5/281	5/281	
		15-24	15-24	
Pb	400	0.0%	0.0%	
		0/281	0/281	
		-	-	
Cr	64	3.9%	0.4%	
		11/281	1/281	
		40-79	79	
Cd	14/1.4	97.9%	97.9%	
		275/281	275/281	
		15-39	15-39	

Table 9.2. Kapan Community: Undetected Measurements

All undetected measurements were excluded from further analysis. Table 9.3 presents the percentage of all samples that exceeded the three reference levels: MAC, HBL (depth 10cm and 20 cm), CL as well as the GM and the range of all detected measurements. According to the results, 96.7% of all detected measurements exceeded MAC for Arsenic, 4.3% for Lead, 99.6% for Chromium and 100% for Cadmium. GM of detected measurements for Arsenic exceeded MAC by 2.1 times, Chromium by 2.2 times and Cadmium by 3.8 times. For Arsenic, 2.9% of soil samples need clean-up and 4.3% for Lead. CL for Chromium and Cadmium were not identified during the literature review and standards differed substantially across countries. According to the test results, 11.2% of Arsenic, 19.6% of Lead and 21.1% of Chromium exceeded the highest background measurements (Cadmium was not detected in the soil). This indicates that the surface level exposure was higher even in comparison with the highest background measurement thus suggesting external pollution.

tals	MAC mg/kg	% above MAC out of detected		% above CL level out of detected	HBL	% above HBL out of detected	
Heavy Metals	tial/ ural	n/N	CL mg/kg	n/N		n/N	
Hear	Residential/ Agricultural	GM and Range of all detected mg/kg		GM and Range of all detected mg/kg	cm)	GM and Range of all detected mg/kg	
		96.7%	100	2.9%	39	11.2%	
As	12	267/276		8/276		31/276	
115	12	24.8		24.8		24.8	
		7-400		7-400		7-400	
		4.3%	400	4.3%	157	19.6%	
		12/281		12/281		55/281	
Pb	400	93.8		93.8		93.8	
		13-		13-		13-	
		19,499		19,499		19,499	
		99.6%	*		177	21.1%	
Cr	61	269/270				57/270	
Cr	64	143.4				143.4	
		63-645				63-645	
		100%	*		Not		
Cd	14/1.4	6/6			Detected		
Cu	14/1.4	53.2					
		22-227					

Table 9.3. Kapan Community: Comparison of Results to MAC, HBL (depth 10 cm, 20 cm) and CL

* Not identified

Table 9.4 presents the results exceeding MAC by sample type, GM and the range of all detected measurements. The results show that Arsenic concentration is very high in yard soil (97.2%) as well as school and kindergarten samples (95.2%). In 4.4% of yard and 4.8% of school samples, Lead exceeded MAC. Furthermore, in one of the yard sample, the amount of Lead exceeded MAC by 48.7 times (19,499 mg/kg). In 99.6% of yard and 100.0% of school as well as kindergarten samples, Chromium exceeded MAC. Cadmium exceeded MAC in all detected samples which were collected from yards.

Table 9.5 presents the results exceeding CL level by sample type. The results show that 3.3% of the yard soil in the community exceeded CL for Arsenic and 4.4% for Lead. Moreover, 4.8% of school and kindergarten soil samples exceeded CL for Lead.

		MAC Mg/kg	Soil Sample Type				
S		Ya	rd	Schools &			
Heavy metals	、 <u> </u>			Kinder	gartens		
m	ial	% ↑	GM and	%↑	GM and		
vy	ent ultı	MAC	Range of	MAC	Range of		
lea	Residential, Agricultura		all		all		
j ili ji	Ag Ag	n/N	detected	n/N	detected		
			mg/kg		mg/kg		
As	12 -	97.2%	25	95.2%	24.1		
AS	12	239/246	7-400	20/21	10-48		
Pb	400 -	4.4%	97.2	4.8%	89.8		
FU	400	11/251	14-19499	1/21	30-487		
Cr	64 -	99.6%	144.1	100.0%	135.8		
Cr	04	239/240	63-645	21/21	112-180		
Cd	14/1.4 -	100.0%	53.2	-	-		
Cu	14/1.4	6/6	22-227	-	-		

Table 9.4. Kapan Community: Results above MAC by Sample Type

Table 9.5. Kapan	Community:	Results above C	CL by	Sample Type
I dole > let IIdpuii	Community .			

	_	Sample Type						
Heavy CF − Metals Ballau V		Ya	urd	School & Kindergarter				
V N	mg kg	0/ † CI	GM and	$0/ \uparrow CI$	GM and			
eav	1116 1×8	%↑CL	Range of	$\% \uparrow CL$	Range of			
H		n/N	all detected	n/N	all detected			
		11/18	mg/kg	11/18	mg/kg			
As	100	3.3%	25	0.0%	24.1			
_		8/246	7-400	0/21	10-48			
Pb	400	4.4%	97.2	4.8%	89.8			
		11/251	14-19499	1/21	30-487			

Table 9.6 shows the results exceeding the MAC according to the community sections. The results show that the percentage of the samples exceeding the MAC for Arsenic in all sections is high (in 92.5-100% of the samples). Chromium concentration is also very high across the sections and exceeded the MAC in 97.9-100% of samples. Lead concentration is comparably low and exceeded the MAC in 7.4% of the samples in Section 1, 3.8% of the samples in Section 2, 1.7% of the samples in Section 3, 5.6% of the samples in Section 4 and 2.6% of the samples in Section 5. Cadmium was detected in two sections (only in 2 samples) and the results exceeded the MAC.

Table 9.7 shows the percentages of the samples exceeding the CL according to the sections of the community. Comparably, the more affected sections are Section 2 (9.6% of samples exceeded the CL for Arsenic and 3.8% of the samples exceeded the CL for Lead) and Section 4 (1.1% of the samples exceeded the CL for Arsenic and 5.6% of the samples exceeded the CL for Lead).

	MAC	Sec					ections				
als	mg/kg	-	1	2	2	3	3	2	1	5	5
Heavy metals	Residential/ Agricultural	%↑ MAC	GM and Range of all								
H	Resi Agri	n/N	detected mg/kg								
As	12	92.5%	20.1	100.0%	38.3	93.0%	20.6	98.6%	22.7	100.0%	28.5
		49/53	7-79	52/52	13-400	53/57	10-58	68/69	11-173	38/38	13-192
Pb	400	7.4%	97.6	3.8%	86.1	1.7%	75.4	5.6%	112.8	2.6%	110.2
		4/54	24-499	2/52	19-19499	1/58	20-508	4/71	14-738	1/39	21-1492
Cr	64	100.0%	145.4	97.9%	126.3	100.0%	156.3	100.0%	145.4	100.0%	141.2
		53/53	68-292	47/48	63-497	58/58	83-645	69/69	81-451	35/35	65-281
Cd	14/1.4	100.0%	227	100.0%	36	-	_	100.0%	34	100.0%	43.3
		1/1	227	1/1	36			1/1	34	3/3	22-74

Table 9.6. Kapan Community: Results above MAC by Sections

Table 9.7. Kapan Community: Results above CL by Sections

Metals	CI	CI Sections									
	CL - mg kg	1	l	2	2	3	3	4	ļ		5
Heavy Me		%↑CL	GM and Range of all	%↑CL	GM and Range of						
He		n/N	detected mg/kg	n/N	detected mg/kg	n/N	detected mg/kg	n/N	detected mg/kg	n/N	all detected mg/kg
As	100	0.0%	20.1	9.6%	38.3	0.0%	20.6	1.1%	22.7	5.3%	28.5
		0/53	7-79	5/52	13-400	0/57	10-58	1/69	11-173	2/38	13-192
Pb	400	7.4% 4/54	97.6 24-499	3.8% 2/52	86.1 19-19499	1.7% 1/58	75.4 20-508	5.6% 4/71	112.8 14-738	2.6% 1/39	110.2 21-1492

After testing of 281 residential soil samples in the Kapan Community, the results indicate that 96.7% of all detected measurements exceeded MAC for Arsenic, 4.3% for Lead, 99.6% for Chromium and 100% for Cadmium. According to the results, soil samples that need cleanup for Arsenic were observed in 2.9% of samples (8 yard soil samples) and for Lead in 4.3% o samples (11 yard soil samples and a sample from school/kindergarten).

10. Lernadzor community

The field work for the thorough risk assessment in Lernadzor Community was conducted in August of 2013. A total 116 soil samples were collected from the residential and agricultural areas of the community, prepared in the laboratory and tested via XRF Analyzer. Out of the 116 soil samples, 63 were from yards, 37 from gardens, 10 from a school and a kindergarten in addition to 6 samples for background measurements at surface, 10 and 20cm depth inside and outside of the community (range of background measurements presented in the Table 10.0). The testing process took place in January of 2014. The duration of testing time was 90 seconds. Samples having test results below the LOD were retested again with the testing time of 240 seconds in March-April of 2014.. The results were compared with three reference levels: Maximum Allowable Concentrations (MAC), Clean up Levels (CL) and Highest Background Level (HBL) of 10cm, 20 cm depth (see Table 10.1).

Heavy metals	Range (mg/kg)
As	15-61
Pb	13-60
Cr	112-221
Cd	-

Table 10.0 Lernadzor community: Range of background measurements

Table 10.1. Lernadzor Community: Reference Levels for Co
--

Heavy	MAC	CL	HBL (10cm, 20 cm depth)
Metals	mg/kg	mg/kg	mg/kg
	Residential/ Agricultural		
As	12	100	61
Pb	400	400	60
Cr	64	_*	221
Cd	14/1.4	_*	Not detected

* Not identified

Some measurements of the community soil samples were below LOD of the XRF analyzer. The results of undetected measurements are presented in Table 10.2. If the analyzer could not detect the analyte of interest, it provided calculated LOD which is determined by multiplying the error of counting statistics of each measurement by three times. Calculated LOD differed for each measurement. Table 10.2 presents the undetected measurements for which the calculated LOD was above MAC. Results of Table 10.2 show that there are no undetected measurements for Arsenic and Lead. Chromium was not detected in 3.4% of the samples and the calculated LOD for these samples exceeded MAC only in 1.7% of the samples. Cadmium was not detected in any samples and the calculated LOD for all undetected measurements was above MAC.

Heavy Metals		% of undetected measurements out of total	% out of total above MAC	
	MAC mg/kg	n/N	n/N	
		Range of LOD's mg/kg	Range of LOD's above MAC mg/kg	
	Residential/ Agricultural			
As	12	0.0%	0.0%	
		0/116	0/116	
		-	-	
Pb	400	0.0%	0.0%	
		0/116	0/116	
		-	-	
Cr	64	3.4%	1.7%	
		4/116	2/116	
		51-71	65-71	
Cd	14/1.4	100.0%	100.0%	
		116/116	116/116	
		17-35	17-35	

Table 10.2. Lernadzor Community: Undetected Measurements

All undetected measurements were excluded from further analysis. Table 10.3 presents the percentage of samples out of the total samples tested that exceed the three reference levels - MAC, HBL(depth 10cm,20 cm), CL as well as the GM and the range of all detected measurements. According to the results, for Arsenic 92.2% of samples exceed MAC, but none exceeded HBL. Furthermore, for Lead, 0.9% of the samples exceeded MAC while 32.8% exceeded HBL. For Chromium, 99.1% of the samples exceeded MAC, but only 15.2% of the samples for HBL. Cadmium was not detected in any of the samples. None of the samples exceeded the CL for Arsenic but for Lead one sample (0.9%) was above CL. GM exceeded the MAC by 1.7 times for Arsenic and 2.4 times for Chromium.

tals	MAC mg/kg	% above MAC out of detected	% above CL level out of detected		HBL	% above HBL out of detected	
Heavy Metals	ial/ ıral	n/N	CL mg/kg	n/N	(depth 10cm, 20	n/N	
Heav	Residential/ Agricultural	GM and Range of all detected mg/kg	GM and Range of all detected mg/kg		cm)	GM and Range of all detected mg/kg	
As	12	92.2%	100	0.0%	61	0.0%	
		107/116		0/116		0/116	
		20.2		20.2		20.2	
		7-61		7-61		7-61	
Pb	400	0.9%	400	0.9%	60	32.8%	
		1/116		1/116		38/116	
		55.8		55.8		55.8	
		13-498		13-498		13-498	
Cr	64	99.1%	*		221	15.2%	
		111/112				17/112	
		156.5				156.5	
		62-440				62-440	
Cd	14/1.4	-	*		Not		
					Detected		

Table 10.3. Lernadzor Community: Results Compared to MAC, HBL (depth 10cm, 20 cm) and CL

* Not identified

Table 10.4 presents the results exceeding MAC by sample type, GM and the range of all detected measurements. Results show that MAC exceeded in 93.7% of yard soil samples for Arsenic, 1.6% for Lead and 100.0% for Chromium. Among garden soil samples, MAC exceeded in 86.5% of samples for Arsenic, 0.0% for Lead and 97.1% for Chromium. In school and kindergarten samples, 100% of the samples exceeded MAC for Arsenic and Chromium. Cadmium was not detected in any of soil samples. Among gardens, school, and kindergarten samples, none of them exceeded MAC for Lead.

 Table 10.4. Lernadzor Community: Results above MAC by Sample Type

als	MAC Mg/kg	Soil Sample Type						
y metals	ltura	Yard		Garden		School & Kindergarten		
Heavy	Resider Agricul 1	%↑ MAC	GM and Range	%↑ MAC	GM and Range	%↑ MAC	GM and Range	

		n/N	of all detected mg/kg	n/N	of all detected mg/kg	n/N	of all detected mg/kg
As	12	93.7%	21.5	86.5%	16.7	100.0%	22.1
AS	12	59/63	7-44	32/37	9-27	10/10	15-43
Pb	400	1.6%	58.8	0.0%	51.3	0.0%	78.2
10	400	1/63	20-498	0/37	26-335	0/10	35-218
Cr	64	100.0%	164.4	97.1%	138.5	100.0%	170.5
	04	61/61	67-440	34/35	62-307	10/10	104-301
Cd	14/1.4		-	-	-	-	-
Cu	14/1.4	-	-	-	-	-	-

11. Syunik Village Community

The field work for the thorough risk assessment in Syunik Village Community was performed in September of 2013. A total 90 soil samples were collected from residential and agricultural areas of the community, prepared in the laboratory and tested via XRF Analyzer. Out of the 90 soil samples, 51 were from yards, 23 from gardens, 10 from a school and a kindergarten in addition to 6 samples for background measurements at surface,10 and 20cm depth inside and outside of the community (range of background measurements presented in the Table 11.0). The testing process took place in January of 2014. The duration of testing time was 90 seconds. Samples having test results below the LOD were retested again in March –April of 2014 with a testing time of 240 seconds. The results were compared with three reference levels: Maximum Allowable Concentrations (MAC), Clean up Levels (CL) and Highest Background Level (HBL) of 10cm, 20 cm depth (see Table 11.1).

Heavy metals	Range (mg/kg)
As	12-55
Pb	9-67
Cr	96-147
Cd	-

Table 11.0 Syunik village community: Range of background measurements

Table 11.1.	Syunik	Village:	Reference	Levels fo	or Com	parison
	•					L

Heavy	MAC	CL	HBL (10cm, 20 cm depth)
Metals	mg/kg	mg/kg	mg/kg
	Residential/ Agricultural		
As	12	100	55
Pb	400	400	26
Cr	64	_*	147

Cd	14/1.4	_*	Not detected

* Not identified

Some measurements of the community soil samples were below the LOD of the XRF analyzer. The results of undetected measurements are presented in Table 11.2. If the analyzer could not detect the analyte of interest, it provided the calculated LOD which is determined by multiplying the error of counting statistics of each measurement by three times. Calculated LOD differed for each measurement. Table 11.2 presents the undetected measurements for which the calculated LOD was above MAC. Results of Table 11.2 show that the analyzer failed to detect Arsenic and Chromium only in a few samples and the calculated LOD of the undetected samples was below the MAC. Moreover, Lead is detected in all measurements. Therefore, the undetected samples for those three heavy metals are not a major concern for Syunik Village. However, Cadmium was not detected in 98.9% of the samples and for all the undetected samples, the LOD was above MAC. Therefore, undetected samples do not necessarily indicate that Cadmium concentrations are below MAC.

Heavy Metals	MAC mg/kg	% of undetected measurements out of total n/N Range of LOD's mg/kg	% out of total above MAC n/N Range of LOD's above MAC mg/kg	
	Residential/Agricultural			
As	12	1.1%	0.0%	
		1/90	0/90	
		7	-	
Pb	400	0.0%	0.0%	
		0/90	0/90	
		-	-	
Cr	64	1.1%	0.0%	
		1/90	0/90	
		55	-	
Cd	14/1.4	98.9%	98.9%	
		89/90	89/90	
		17-34	17-34	

Table 11.2.	Syunik	Village:	Undetected	Measurements
--------------------	--------	----------	------------	--------------

All undetected measurements were excluded from further analysis. Table 11.3 presents the percentage of samples out of the total samples that exceeded the three reference levels - MAC, HBL (depth of 10cm and 20 cm), CL as well as the GM and the range of all detected measurements. According to the results, for Arsenic 83.1% of the samples exceeded MAC, but only 2.2% exceeded HBL. For Lead, none of the samples exceeded MAC but 74.4% exceeded the HBL. For Chromium, 97.8% of the samples exceeded MAC, but only 23.6% exceeded the HBL. Cadmium was detected in one measurement result was above MAC. For Arsenic and Lead, none of the samples exceeded the CL. GM for Arsenic exceeded the MAC by 1.4 times and for Chromium by 1.9 times.

Ta	Table 11.3. Syunik Village: Results Compared to MAC, HBL (depth 10cm, 20 cm) and CL								
tals	MAC mg/kg	% above MAC out of detected		% above CL level out of detected	Highest backgrou	% above HBL out of detected			
/ Me	al/ ral	n/N	Clean-up level (CL)	n/N	nd level (HBL)	n/N			
Heavy Metals	Residential/ Agricultural	GM and Range of all detected mg/kg	mg/kg	GM and Range of all detected mg/kg	(depth 10cm, 20 cm)	GM and Range of all detected mg/kg			
As	12	83.1%	100	0.0%	55	2.2%			
		74/89		0/89		2/89			
		17.8		17.8		17.8			
		10-77		10-77		10-77			
Pb	400	0.0%	400	0.0%	26	74.4%			
		0/90		0/90		67/90			
		44.7		44.7		44.7			
		9-272		9-272		9-272			
Cr	64	97.8%	*		147	23.6%			
		87/89				21/89			
		122.8				122.8			
		49-270				49-270			
Cd	14/1.4	100.0%	*		Not				
		1/1			Detected				
		35							
		35							

* Not identified

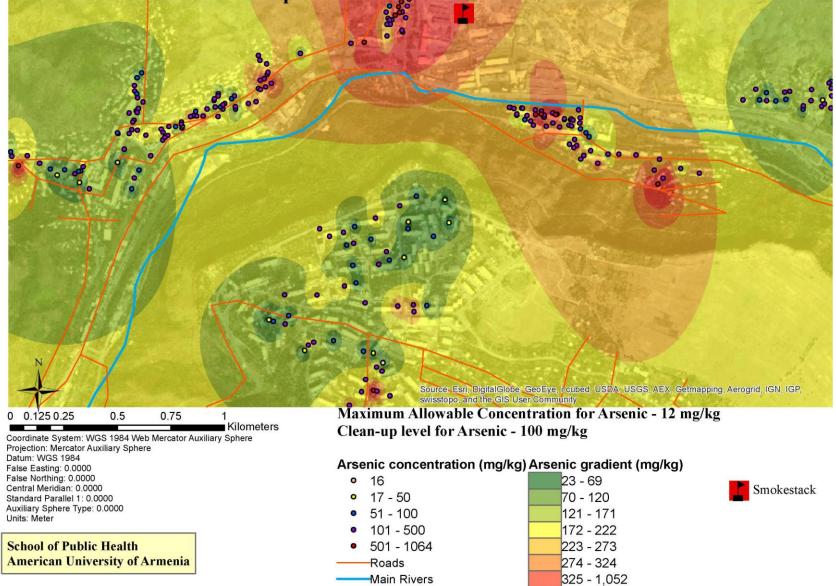
Table 11.4 presents the results exceeding MAC by sample type, GM, and the range of all detected measurements. Results indicate that among yard soil samples, Arsenic, Chromium and Cadmium exceeded MAC in 96.1%, 100.0% and 100.0% of the samples respectively. In garden soil samples,

Arsenic and Chromium exceeded MAC in 60.9% and 95.7% of samples. Among school and kindergarten soil samples, Arsenic and Chromium exceeded MAC in 66.7% and 88.9% of samples.

	MAC Mg/kg	Soil Sample Type					
l		Ya	ard	Ga	rden		ool &
eta	< _					Kinde	rgarten
Heavy metals	Residential/ Agricultural	%↑	GM and	%↑	GM and	%↑	GM and
W	ent ultı	MAC	Range	MAC	Range	MAC	Range
lea	sid		of all		of all		of all
H	Residential Agricultura	n/N	detected	n/N	detected	n/N	detected
			mg/kg		mg/kg		mg/kg
As	12	96.1%	20.3	60.9%	13.4	66.7%	14.1
AS	12	49/51	10-77	14/23	10-21	6/9	10-24
Pb	400	0.0%	59.7	0.0%	27.5	0.0%	50.5
10	400	0/51	18-272	0/23	14-105	0/10	10-137
Cr	64	100.0%	128.6	95.7%	117.8	88.9%	106.5
Cr	04	51/51	70-270	22/23	63-206	8/9	49-152
Cd	14/1.4	100.0	35	-	-	-	-
Cu	14/1.4	1/1	35	-	-	-	-

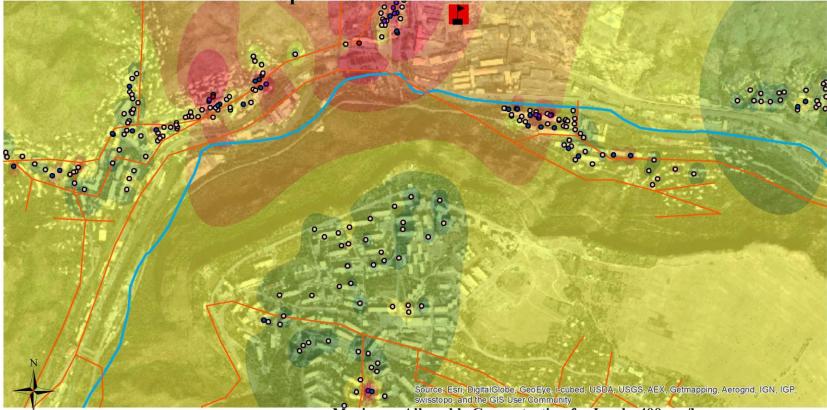
 Table 11.4. Syunik Village: Results above MAC by Sample Type

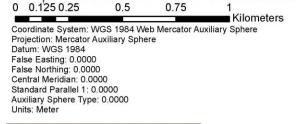
 MAC


 G # G

REFERENCE:

- 1. *Method* 6200.*Field Portable X-Ray Fluorescence Spectometry for the Determination of Elemental Concentrations in Soil and Sediment.* US Environmental Protection Agency 2007. http://www.epa.gov/osw/hazard/testmethods/sw846/pdfs/6200.pdf
- 2. Instruction Manual. Innov-X Systems Alpha Series, X-Ray Fluorescence Spectrometers 2005.


FIGURES (MAPS PREPARED BY KRISTINA AKOPYAN, MD, MPH)


Alaverdi Community Map of Arsenic Concentration

63

Alaverdi Community Map of Lead Concentration

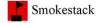
School of Public Health American University of Armenia

Maximum Allowable Concentration for Lead - 400 mg/kg Clean-up level for Lead - 400 mg/kg

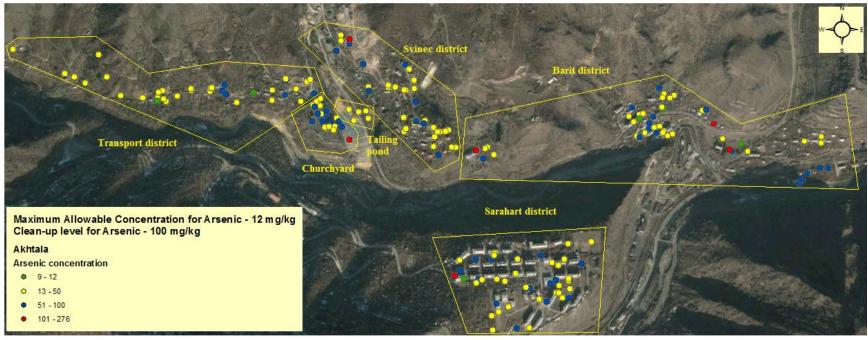
17 - 81

82 - 170

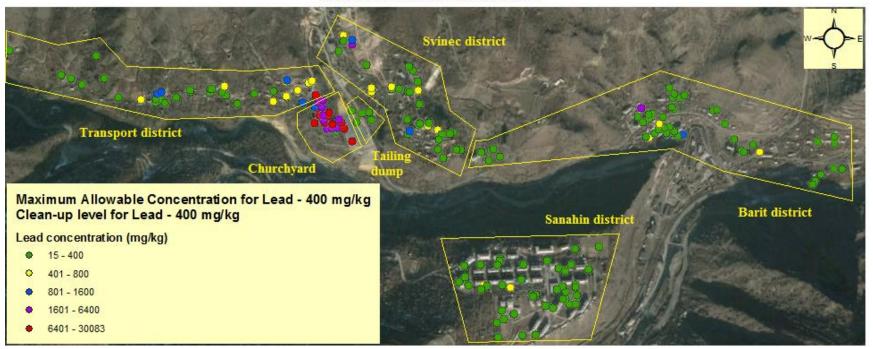
171 - 272

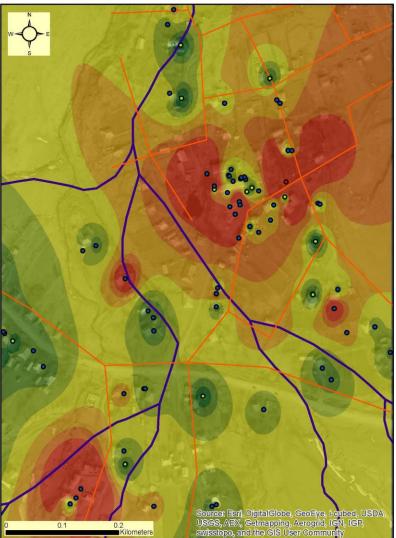

273 - 361

362 - 451


452 - 540 541 - 3,268

Lead concentration (mg/kg) Lead gradient (mg/kg)


0	13 - 399	
0	400	
•	401 - 800	
•	801 - 1600	
•	1601 - 3703	
_	Roads	
	Main Rivers	

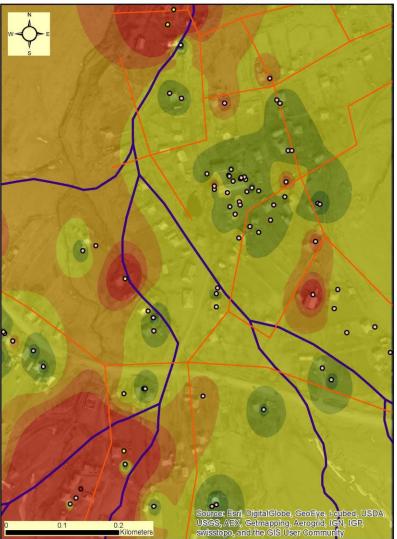

Akhtala Community Map of Arsenic Concentration

Akhtala Community Map of Lead Concentration

Armanis Community Map of Arsenic Concentration

Maximum Allowable Concentration for Arsenic - 12 mg/kg Clean-up Level for Arsenic - 100 mg/kg

Armanis


Arsenic concentration (mg/kg)

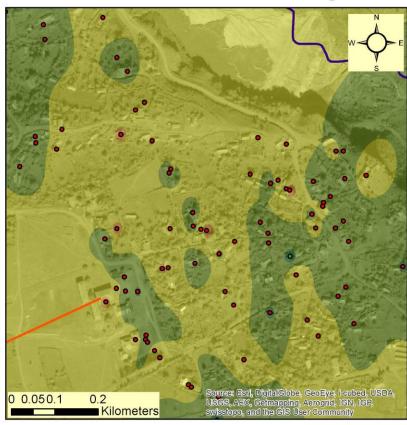
- 8-12
- 13-100
- 101 169
- ----- Roads

Arsenic gradient (mg/kg)

- 8 13
- 14 15
- 16 18
- 19 20 21 - 23
- 21-20
- 24 25
- 26 164

Armanis Community Map of Lead Concentration

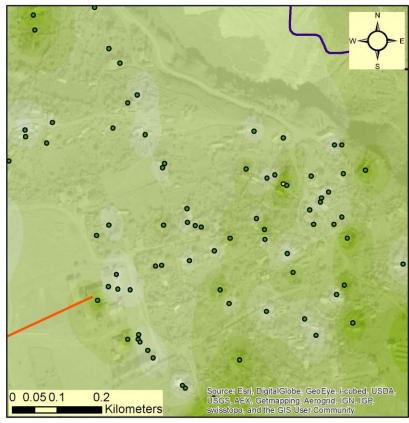
Maximum Allowable Concentration for Lead - 400 mg/kg Clean-up Level for Lead - 400 mg/kg


Lead concentration (mg/kg)

- **o** 19 400
- 401 800
- 801 3353
- ----- Roads
- Rivers

Lead gradient (mg/kg)

- 22 29
- 30 70
- 71 111
- 112 152
- 153 192 193 - 233
- 193 233
- 234 3,271


Metz Ayrum Community Map of Arsenic Concentration

Maximum Allowable Concentration for Arsenic - 12 mg/kg Clean-up level for Arsenic - 100 mg/kg Metz Ayrum Arsenic concentration (mg/kg) 0 9 - 12 13 - 64 Rivers Roads Arsenic gradient (mg/kg) 9.113815308 - 15.05650164 15.05650165 - 24.4481383 24.44813831 - 33.83977497 33.83977498 - 43.23141163 43.23141164 - 64 Coordinate System: WGS 1984 Web Mercator Auxiliary Sphere

Coordinate System: WGS 1984 Web Mercator Auxiliary Sphere Projection: Mercator Auxiliary Sphere Datum: WGS 1984 False Easting: 0.0000 False Northing: 0.0000 Central Meridian: 0.0000 Standard Parallel 1: 0.0000 Auxiliary Sphere Type: 0.0000 Units: Meter

Metz Ayrum Community Map of Lead Concentration

Maximum Allowable Concentration for Lead - 400mg/kg

Lead concentration (mg/kg)

- 19 200
- 201 359

Rivers

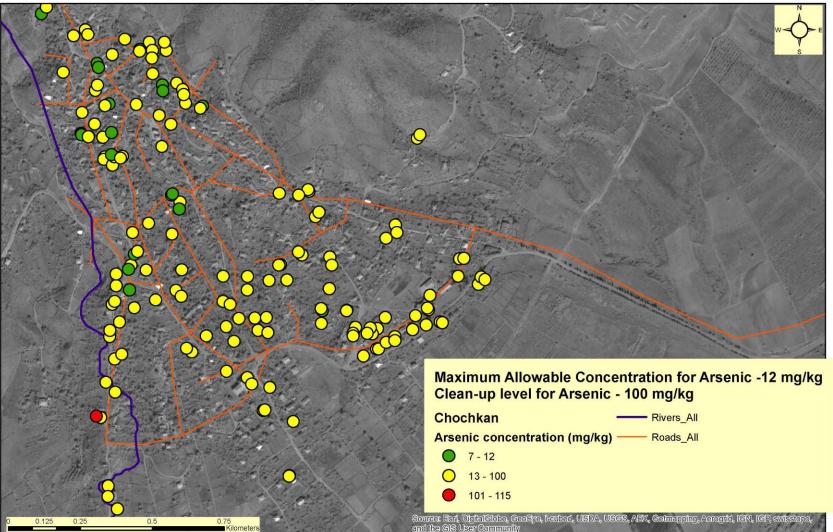
Lead gradient (mg/kg)

 19.07323265 - 39.46141149

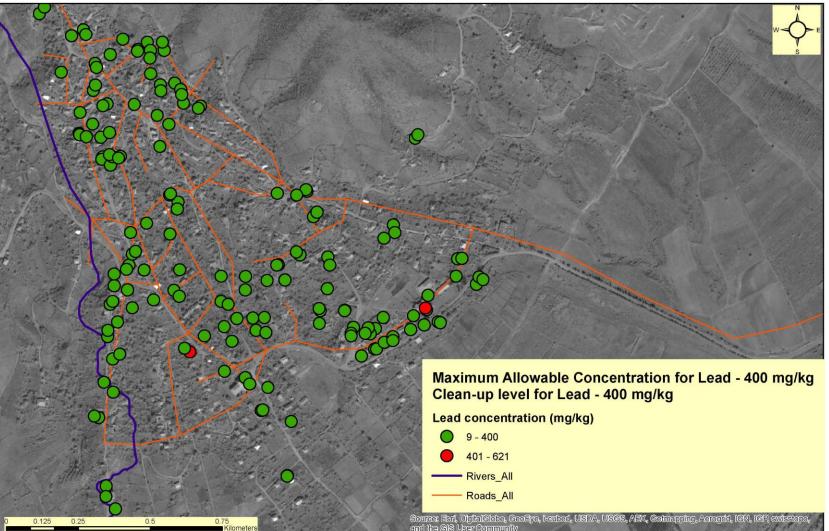
 39.4614115 - 50.93513276

 50.93513277 - 62.40885402

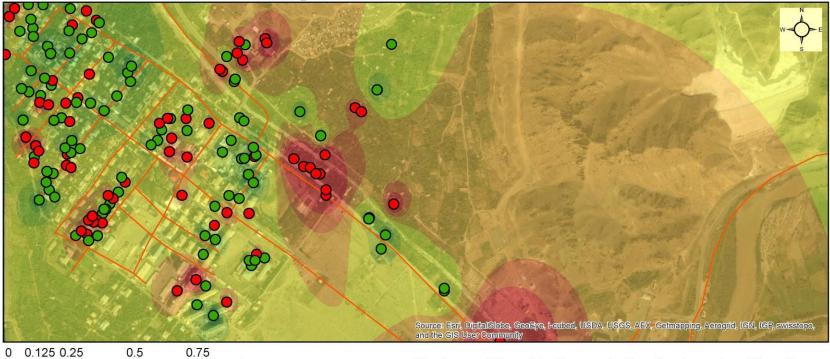
 62.40885403 - 73.88257528


 73.88257529 - 85.35629655

 85.35629656 - 96.83001781

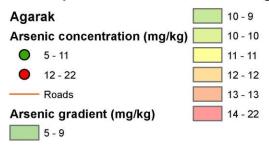

 96.83001782 - 358.1965027

Coordinate System: WGS 1984 Web Mercator Auxiliary Sphere Projection: Mercator Auxiliary Sphere Datum: WGS 1984 False Easting: 0.0000 False Northing: 0.0000 Central Meridian: 0.0000 Standard Parallel 1: 0.0000 Auxiliary Sphere Type: 0.0000 Units: Meter

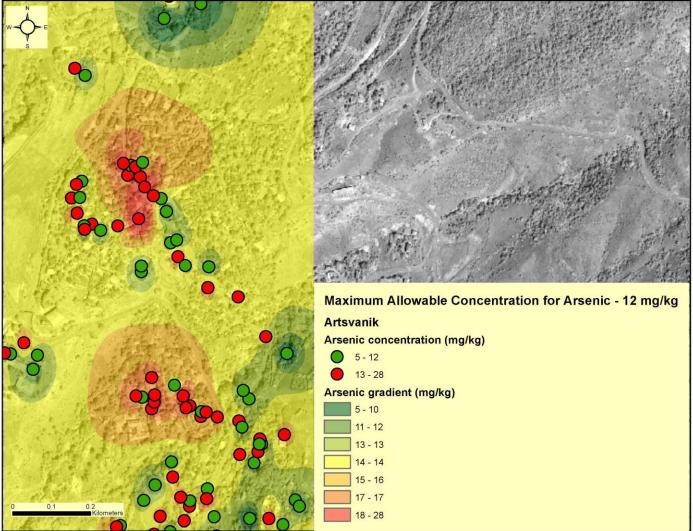

Chochkan Community Map of Arsenic Concentration

Chochkan Community Map of Lead Concentration

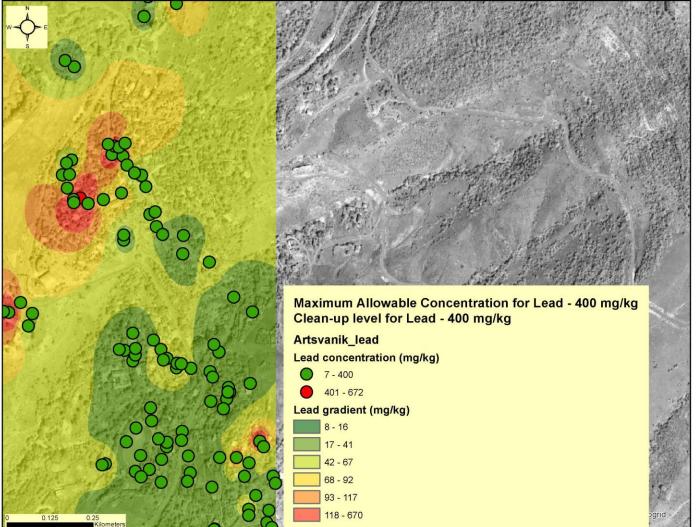
Agarak Community Map of Arsenic Concentration


Coordinate System: WGS 1984 Web Mercator Auxiliary Sphere Projection: Mercator Auxiliary Sphere Datum: WGS 1984 False Easting: 0.0000 False Northing: 0.0000 Central Meridian: 0.0000 Standard Parallel 1: 0.0000 Auxiliary Sphere Type: 0.0000 Units: Meter

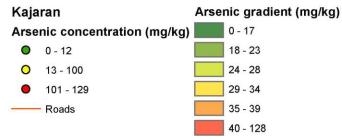
Kilometers

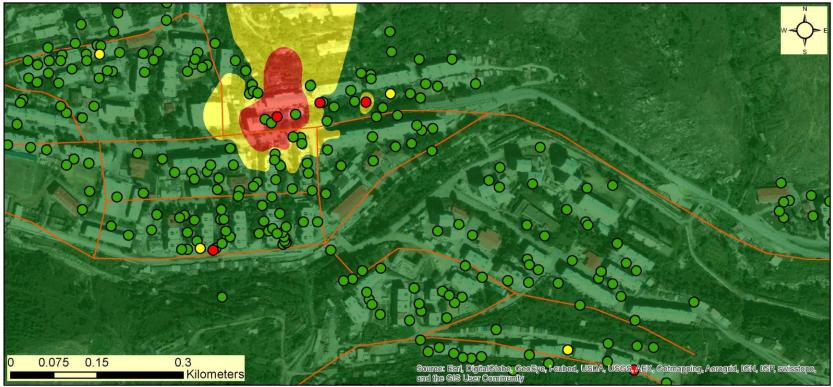

School of Public Health American University of Armenia

5

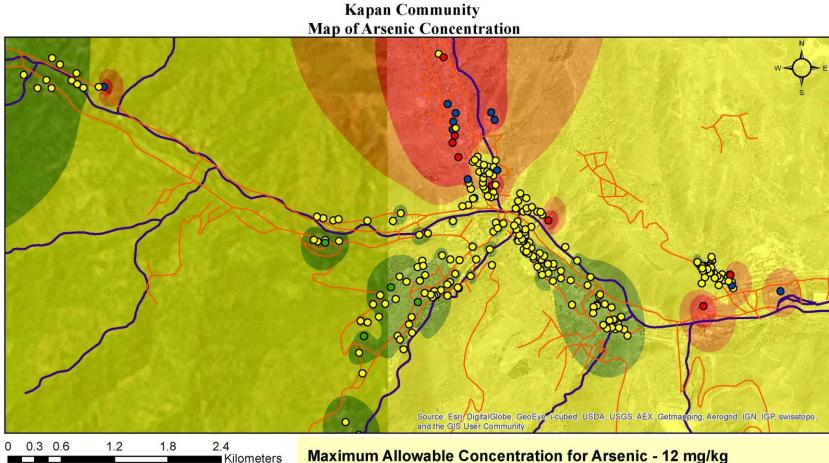

Maximum Allowable Concentration for Arsenic - 12 mg/kg Clean-up level for for Arsenic - 100 mg/kg

Artsvanik Community Map of Arsenic Concentration

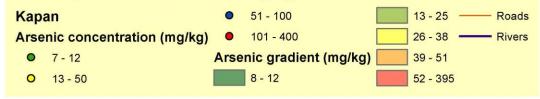

Artsvanik Community Map of Lead Concentration

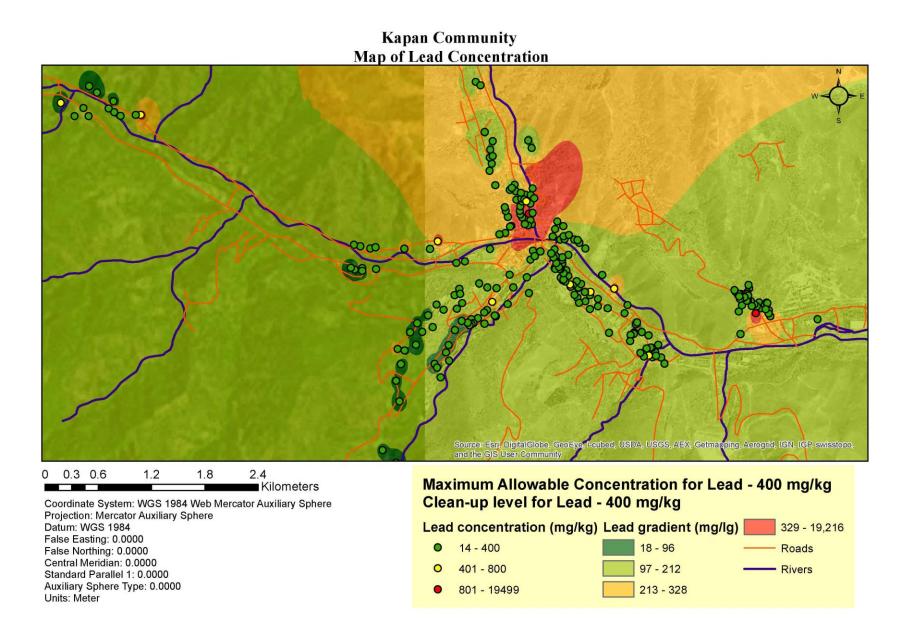

Kajaran Community Map of Arsenic Concentration

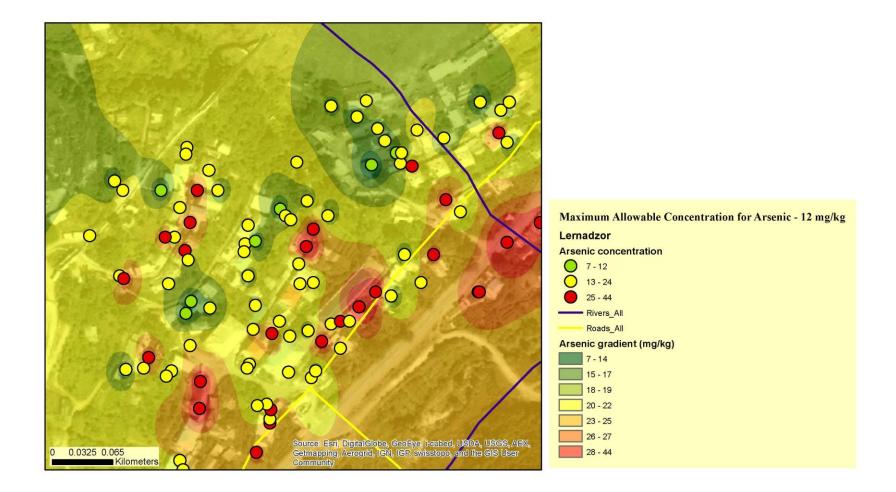
Coordinate System: WGS 1984 Web Mercator Auxiliary Sphere Projection: Mercator Auxiliary Sphere Datum: WGS 1984 False Easting: 0.0000 False Northing: 0.0000 Central Meridian: 0.0000 Standard Parallel 1: 0.0000 Auxiliary Sphere Type: 0.0000 Units: Meter Maximum Allowable Concentration for Arsenic - 12 mg/kg Clean-up level for Arsenic - 100 mg/kg


Kajaran Community Map of Lead Concentration

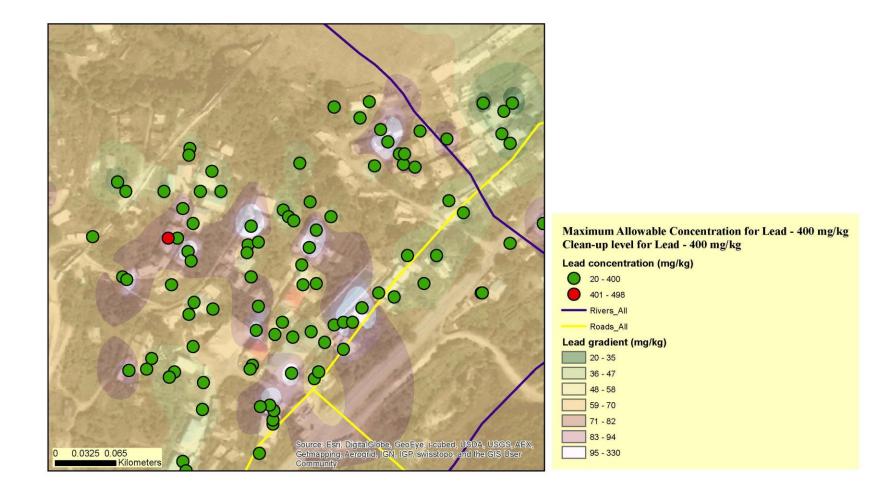
Coordinate System: WGS 1984 Web Mercator Auxiliary Sphere Projection: Mercator Auxiliary Sphere Datum: WGS 1984 False Easting: 0.0000 False Northing: 0.0000 Central Meridian: 0.0000 Standard Parallel 1: 0.0000 Auxiliary Sphere Type: 0.0000 Units: Meter Maximum Allowable Concentration for Lead - 400 mg/kg Clean-up level for Lead - 400 mg/kg

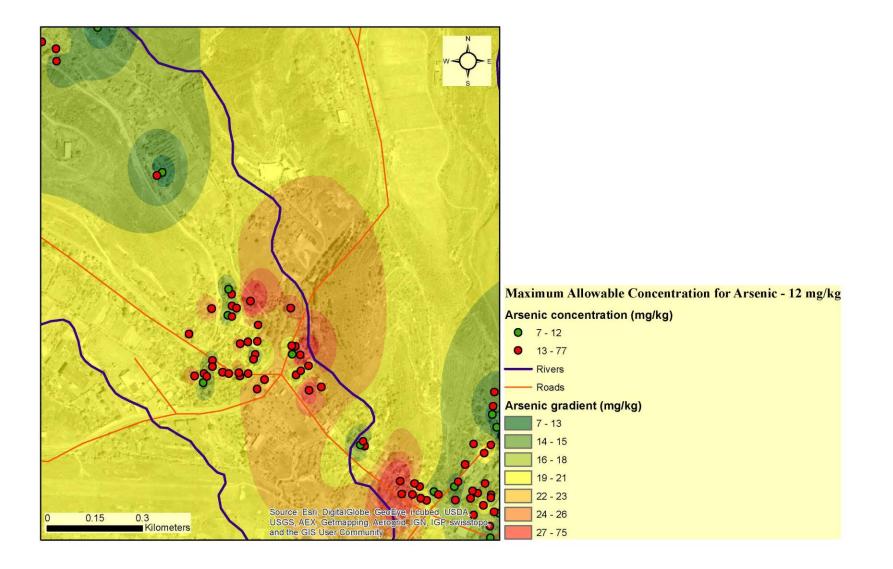

Lead concentration (mg/kg) Lead gradient (mg/kg)

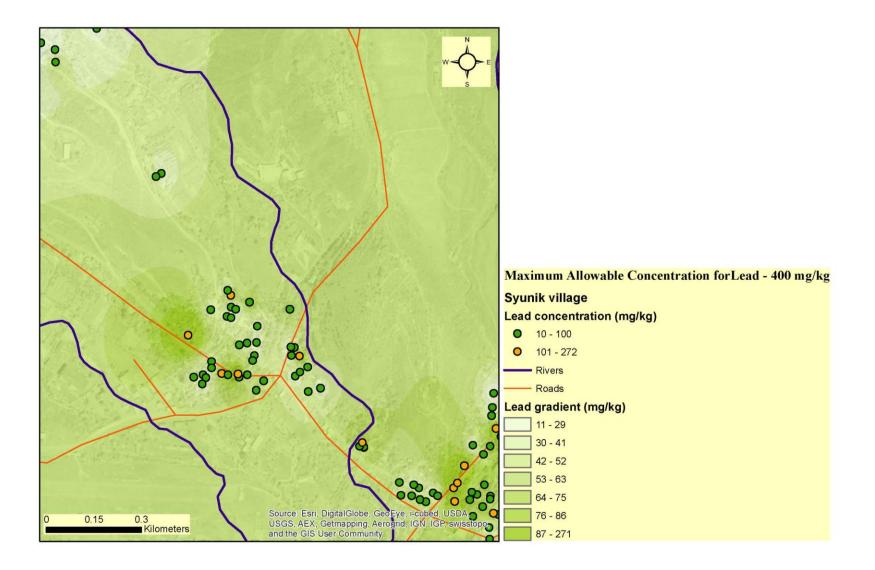



Coordinate System: WGS 1984 Web Mercator Auxiliary Sphere Projection: Mercator Auxiliary Sphere Datum: WGS 1984 False Easting: 0.0000 False Northing: 0.0000 Central Meridian: 0.0000 Standard Parallel 1: 0.0000 Auxiliary Sphere Type: 0.0000 Units: Meter

Maximum Allowable Concentration for Arsenic - 12 mg/kg Clean-up level for Arsenic - 100 mg/kg




Lernadzor Community Map of Arsenic Concentration


Lernadzor Community Map of Lead Concentration

Syunik village Map of Arsenic Concentration

Syunik village Map of Lead Concentration

